
 1

Copyright
Table of Contents
Index
Full Description
Reviews
Examples
Reader reviews
Errata

SVG Essentials

J. David Eisenberg
Publisher: O'Reilly
First Edition February 2002
ISBN: 0-596-00223-8, 364 pages

Scalable Vector Graphics—or SVG—is the new XML-based graphics standard
from the W3C that will enable Web documents to be smaller, faster and more
interactive. This insightful book takes you through the ins and outs of SVG,
from the basics to more complicated features. Whether you're a graphic
designer looking for new tools, or a programmer creating and managing
graphics, this book provides a solid foundation.

http://www.oreilly.com/catalog/svgess/desc.html
http://www.oreilly.com/catalog/svgess/reviews.html
http://www.oreilly.com/catalog/svgess/
http://www.oreillynet.com/cs/catalog/view/au/799?x-t=book.view

 2

Table of Content
Table of Content ... 2
Dedication ... 6
Preface... 6

Who Should Read This Book?.. 6
Who Should Not Read This Book?... 6
If You're Still Reading This... ... 6
About the Examples.. 7
Request for Comments.. 11
Acknowledgments... 12

Chapter 1. Getting Started... 13
1.1 Graphics Systems.. 13
1.2 Scalability ... 15
1.3 SVG's Role.. 17
1.4 Creating an SVG Graphic ... 17

Chapter 2. Coordinates.. 24
2.1 The Viewport .. 24
2.2 Using Default User Coordinates ... 25
2.3 Specifying User Coordinates for a Viewport.. 27
2.4 Preserving Aspect Ratio.. 28
2.5 Nested Systems of Coordinates .. 32

Chapter 3. Basic Shapes.. 35
3.1 Lines.. 35
3.2 Stroke Characteristics ... 35
3.3 Rectangles ... 39
3.4 Circles and Ellipses... 41
3.5 The polygon Element.. 42
3.6 The polyline Element.. 45
3.7 Line Caps and Joins .. 45
3.8 Basic Shapes Reference Summary.. 46

Chapter 4. Document Structure... 49
4.1 Structure and Presentation .. 49
4.2 Using Styles with SVG ... 49
4.3 Document Structure – Grouping and Referencing Objects 52

Chapter 5. Transforming the Coordinate System ... 60
5.1 The translate Transformation.. 60
5.2 The scale Transformation ... 62
5.3 Sequences of Transformations.. 65
5.4 Technique: Converting from Cartesian Coordinates .. 67
5.5 The rotate Transformation .. 69
5.6 Technique: Scaling Around a Center Point .. 71
5.7 The skewX and skewY Transformations.. 72
5.8 Transformation Reference Summary.. 73

Chapter 6. Paths .. 74
6.1 moveto, lineto, and closepath.. 74

 3

6.2 Relative moveto and lineto ... 76
6.3 Path Shortcuts ... 76
6.4 Elliptical Arc... 78
6.5 Technique: Converting from Other Arc Formats.. 80
6.6 Bézier Curves.. 87
6.7 Path Reference Summary.. 92
6.8 Paths and Filling ... 93
6.9 The marker element .. 94
6.10 Marker Miscellanea .. 97

Chapter 7. Patterns and Gradients... 99
7.1 Patterns.. 99
7.2 Gradients ... 104
7.3 Transforming Gradients and Patterns ... 112

Chapter 8. Text.. 114
8.1 Text Terminology ... 114
8.2 Simple Attributes and Properties of the text Element....................................... 115
8.3 Text Alignment ... 117
8.4 The tspan element ... 118
8.5 Setting textLength... 120
8.6 Vertical Text ... 121
8.7 Internationalization and Text .. 122
8.8 Text on a Path ... 125
8.9 Whitespace and Text... 128
8.10 Case Study -- Adding Text to a Graphic... 129

Chapter 9. Clipping and Masking ... 131
9.1 Clipping to a Path.. 131
9.2 Masking... 134
9.3 Case Study -- Masking a Graphic ... 137

Chapter 10. Filters... 140
10.1 How Filters Work ... 140
10.2 Creating a Drop Shadow... 141
10.3 Creating a Glowing Shadow ... 143
10.4 The feImage Filter... 147
10.5 The feComponentTransfer Filter .. 147
10.6 The feComposite Filter ... 152
10.7 The feBlend Filter ... 154
10.8 The feFlood and feTile Filters .. 155
10.9 Lighting Effects .. 157
10.10 Accessing the Background.. 162
10.11 The feMorphology Element.. 163
10.12 The feConvolveMatrix Element ... 164
10.13 The feDisplacementMap Element... 165
10.14 The feTurbulence Element.. 167
10.15 Filter Reference Summary .. 168

Chapter 11. Animating and Scripting SVG .. 172
11.1 Animation Basics .. 172

 4

11.2 How Time Is Measured... 174
11.3 Repeated Action.. 176
11.4 The set Element... 177
11.5 The animateColor Element ... 178
11.6 The animateTransform Element ... 178
11.7 The animateMotion Element... 180
11.8 Using Links in SVG.. 182
11.9 Scripting SVG... 183

Chapter 12. Generating SVG .. 202
12.1 Using Perl to Convert Custom Data to SVG .. 202
12.2 Using Java to Convert XML to SVG.. 207
12.3 Using XSLT to Convert XML Data to SVG .. 225

Chapter 13. Serving SVG Files... 240
13.1 Serving Web Files -- The Task at Hand.. 240
13.2 Partitioning the Task ... 241
13.3 Setting up the Server... 255

Appendix A. The XML You Need for SVG... 258
A.1 What Is XML? ... 258
A.2 Anatomy of an XML Document .. 259
A.3 Character Encodings .. 263
A.4 Validity... 265
A.5 XML Namespaces.. 267
A.6 Tools for Processing XML... 268

Appendix B. Introduction to Stylesheets .. 270
B.1 Anatomy of a Style... 270
B.2 Style Selectors .. 270
B.3 Internal Stylesheets .. 270
B.4 Style Selector Classes... 271

Appendix C. Programming Concepts ... 277
C.1 Constants .. 277
C.2 Variables... 277
C.3 Assignment and Operators ... 278
C.4 Arrays ... 279
C.5 Comments... 280
C.6 Conditional Statements .. 280
C.7 Repeated Actions.. 281
C.8 Functions .. 281
C.9 Objects, Properties, and Methods... 282
C.10 What, Not How .. 284

Appendix D. Matrix Algebra .. 285
D.1 Matrix Terminology... 285
D.2 Matrix Addition.. 285
D.3 Matrix Multiplication... 286
D.4 How SVG Uses Matrix Algebra for Transformations 288

Appendix E. Creating Fonts.. 291
E.1 The ttf2svg Utility .. 291

 5

Appendix F. Using SVG with Other XML Applications ... 293
F.1 Referring to an SVG Document in HTML... 293
F.2 Referring to an SVG Document in XHTML .. 293
F.3 Placing SVG Directly Within XHTML Documents... 293
F.4 Embedding SVG in XSL Formatting Objects .. 295

Colophon... 299
Index ... 300

 6

Dedication

To my Mother and my late Father, for their advice and love through the years.

Preface

SVG Essentials introduces you to the Scalable Vector Graphics XML application. SVG, a
recommendation from the World Wide Web Consortium, uses XML to describe graphics
that are made up of lines, curves, and text. This rather dry definition does not do justice to
the scope and power of SVG.

You can add SVG graphics to an Extensible Stylesheet Language Formatting Objects
(XSL-FO) document, and convert the combined document to Adobe PDF format for
high-quality printouts. Mapmakers and meteorologists are using SVG to create highly
detailed graphic images in a truly portable format. All of the diagrams in this book were
originally created in SVG before being sent to the art department at O'Reilly. As you
learn and use SVG, you're sure to think of new and interesting uses for this emerging
technology.

Who Should Read This Book?

You should read this book if you want to:

• Create SVG files in a text or XML editor
• Create SVG files from existing vector data
• Transform other XML data to SVG
• Use JavaScript to manipulate the SVG document object tree
• Serve SVG or SVG-source graphics over the Web

Who Should Not Read This Book?

If you simply want to view SVG files, you need only acquire a viewer program or plug-in
for the Web, download the files, and enjoy them. There's no need for you to know what's
going on behind the scenes unless you wish to satisfy your lively intellectual curiosity.

If you wish to create SVG files with a drawing program that has SVG export capability,
just read that program's documentation to learn how to use that program feature.

If You're Still Reading This...

If you've decided that you should indeed read this book, you should also be aware that
most of the people who use this book will be fairly advanced users, quite probably from a
technical background rather than a graphics design background. We didn't want to burden
them with a lot of basic material up front, but we did want the book to be accessible to
people with no background in XML or programming, so we created a number of

 7

introductory chapters — and then put them in the back of the book as appendixes. If you
haven't used XML or stylesheets (and this could include some of the technical folks!) or
have never programmed, you might want to turn first to the appendixes. A complete list
of all the chapters and appendixes with details on what they contain is given later in this
preface.

If you're one of the technical types, you definitely need to be aware that this book will not
make you a better artist, any more than a book on word processing algorithms will make
you a better writer. This book gives the technical details of scalable vector graphics; to
create better art, you need to learn to see, and the book you should read in addition to this
one is The New Drawing on the Right Side of the Brain, by Dr. Betty Edwards.

This book gives you the essentials of SVG; if you want to find out all the information,
straight from the source, you should go to
http://www.w3.org/Graphics/SVG/Overview.htm8.

About the Examples

All the examples in this book except for those in Chapter 11 have been tested with the
Batik SVG viewer on a system running Linux (the Mandrake distribution). The Batik
SVG viewer is an application of the software developed by the Apache Software
Foundation's Batik project. This cross-platform software is written in Java and is
available as open source under the Apache Software License. For full details, visit
http://xml.apache.org/batik/.

Since Batik produces only static output, I could not use it for the examples in Chapter 11.
Those examples were tested with the Adobe SVG Viewer. Adobe has been deeply
involved in promoting SVG as a standard, and their viewer, which can be downloaded
from http://www.adobe.com/svg/viewer/install/, is a nearly complete implementation of
the SVG 1.0 specification. It offers JavaScript and ECMA Script support in Netscape,
Internet Explorer, and RealPlayer 8. As of this writing, it is available for Windows and
Macintosh OS X. An unsupported Linux version is also available at
http://www.adobe.com/svg/viewer/install/old.html.

Another SVG viewer, also written in Java, is available from Australia's Commonwealth
Scientific and Industrial Research Organization (CSIRO) Mathematical and Information
Sciences department. This viewer, which has not been updated since December of 2000,
is available at http://sis.cmis.csiro.au/svg/. The same group has implemented a subset of
SVG for Pocket PCs; it is available for license at
http://www.cmis.csiro.au/sis/SVGpocket.htm.

As you look through the illustrations in this book, you will find that they are utterly
lacking in artistic merit. There are reasons for this. First, each example is intended to
illustrate a particular aspect of SVG, and it should do so without additional visual
distractions. Second, the author becomes terribly depressed when he looks at other books
with impossibly beautiful examples; "I can never draw anything that looks like this," he

http://www.w3.org/Graphics/SVG/Overview.htm8
http://xml.apache.org/batik/
http://www.adobe.com/svg/viewer/install/
http://www.adobe.com/svg/viewer/install/old.html
http://sis.cmis.csiro.au/svg/
http://www.cmis.csiro.au/sis/SVGpocket.htm

 8

thinks. In an effort to save you from similar distress, the examples are purposely as
simple (or simplistic) as possible. As you look at them, your immediate reaction will be:
"I can certainly use SVG to draw something that looks far better than this!" You can, and
you will.

Organization of This Book

Chapter 1

This chapter gives a brief history of SVG, compares raster and vector graphics
systems, and ends with a brief tutorial introducing the main concepts of SVG.

Chapter 2

How do you determine the position of a point in a drawing? Which way is "up?"
This chapter answers those questions, showing how to change the system by
which coordinates are measured in a graphic.

Chapter 3

This chapter shows you how to construct drawings using the basic shapes
available in SVG: lines, rectangles, polygons, circles, and ellipses. It also
discusses how to determine the colors for the outline and interior of a shape.

Chapter 4

In a complex drawing, there are elements that are reused or repeated. This chapter
tells you how to group objects together so they may be treated as a single entity
and re-used. It also discusses use of external images, both vector and raster.

Chapter 5

If you draw a square on a sheet of stretchable material, and stretch the material
horizontally, you get a rectangle. Skew the sides of the sheet, and you see a
parallelogram. Now tilt the sheet 45 degrees, and you have a diamond. In this
chapter, you will learn how to move, rotate, scale, and skew the coordinate system
to affect the shapes drawn on it.

Chapter 6

All the basic shapes are actually specific instances of the general concept of a path.
This chapter shows you how to describe a general outline for a shape by using
lines, arcs, and complex curves.

Chapter 7

 9

This chapter adds more to the discussion of color from Chapter 3, discussing how
to create a color gradient or a fill pattern.

Chapter 8

Graphics aren't just lines and shapes; text is an integral part of a poster or a
schematic diagram. This chapter shows how to add text to a drawing, both in a
straight line and following a path.

Chapter 9

This chapter shows you how to use a clipping path to display a graphic as though
it were viewed through a circular lens, keyhole, or any other arbitrary shape. It
also shows how to use a mask to alter an object's transparency so that it appears to
"fade out" at the edges.

Chapter 10

Although an SVG file describes vector graphics, the document is eventually
rendered on a raster device. In this chapter, you'll learn how to apply
raster-oriented filters to a graphic to blur an image, transform its colors, or
produce lighting effects.

Chapter 11

Since SVG is an XML application, you can use Java and JavaScript to
dynamically control a graphic's attributes. This chapter also shows you how to use
SVG's built-in animation capabilities.

Chapter 12

Although you can create an SVG file from scratch, most people will have existing
vector data or XML data that they wish to display in graphic form. This chapter
discusses the use of programming languages such as Java, Perl, and XSLT to
create SVG from these data sources.

Chapter 13

This chapter shows a servlet that transforms XML to SVG, and then to PNG
format, for delivery to browsers that do not have SVG viewer plug-ins.

Appendix A

SVG is an application of XML, the Extensible Markup Language. If you haven't
used XML before, you should read this appendix to familiarize yourself with this
remarkably powerful and flexible format for structuring data and documents.

 10

Appendix B

You can use stylesheets to apply visual properties to particular elements in your
SVG document. These are exactly the same kind of stylesheets that can be used
with HTML documents. If you've never used stylesheets before, you'll want to
read this brief introduction to the anatomy of a stylesheet.

Appendix C

If you're a graphic designer who hasn't done much programming, you'll want to
find out what programmers are talking about when they throw around words like
"object model" and "function."

Appendix D

To fully understand coordinate transformations and filter effects in SVG it's
helpful, though not necessary, to understand matrix algebra, the mathematics used
to compute the coordinates and pixels. This appendix highlights the basics of
matrix algebra.

Appendix E

TrueType fonts represent glyphs (characters) in a vector form. This appendix
shows you how to take your favorite fonts and convert them to paths for use in
SVG documents.

Appendix F

Since SVG is an application of XML, it can work with other XML applications.
This appendix shows you how to put SVG into XHTML and XSL Formatting
Objects.

Conventions Used in This Book

Italic

Is used to introduce new terms, as well as for email and URL addresses.

Constant width

Is used for code examples and fragments.

Constant width bold

Is used to highlight a section of code being discussed in the text.

 11

Constant width italic

Is used for replaceable elements in code examples.

This is a note.

This is a warning.

This book uses callouts to denote "points of interest " in code listings. A callout is shown
as a white number in a black circle; the corresponding number after the listing gives an
explanation. Here's an example:

Roses are red,
 Violets are blue. [1]
Some poems rhyme;
 This one doesn't. [2]

[1] Violets actually have a color value of #9933cc.

[2] This poem uses the literary device known as a "surprise ending."

Request for Comments

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for this book where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/svgess

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the
O'Reilly Network, see our web site at:

http://www.oreilly.com/catalog/svgess
mailto:bookquestions@oreilly.com

 12

http://www.oreilly.com

Acknowledgments

I'd like to thank Simon St.Laurent, the editor of this book, for his guidance and comments,
which were always right on the mark. He also told me in an email, "we already know that
you know how to write," which is one of the nicest things anyone has ever told me.

Thanks also to Edd Dumbill, who wrote the document which I modified only slightly to
create Appendix A. Of course, any errors in that appendix have been added by my
modifications.

Thanks also go to Antoine Quint and to David Klaphaak and the SVG Quality
Engineering team at Adobe, who did the technical review of the manuscript. Your
comments have helped improve many aspects of this book.

Jeffrey Zeldman is the person who first put the idea in my head that I, too, could write a
book, and for that I thank him most sincerely.

I also want to thank all the people, foremost among them my brother Steven, who, when I
told them I was writing a book, believed in me enough to say, "Wow, that's great."

http://www.oreilly.com/

 13

Chapter 1. Getting Started

SVG, which stands for Scalable Vector Graphics, is an application of XML that makes it
possible to represent graphic information in a compact, portable form. Interest in SVG is
growing rapidly, and tools to create and view SVG files are already available from major
companies. This chapter begins with a description of the two major systems of computer
graphics, and describes where SVG fits into the graphics world. The chapter concludes
with a brief example that uses many of the concepts that we will explore in detail in the
following chapters.

1.1 Graphics Systems

The two major systems for representing graphic information on computers are raster and
vector graphics.

1.1.1 Raster Graphics

In raster graphics, an image is represented as a rectangular array of picture elements or
pixels (see Figure 1-1). Each pixel is represented either by its RGB color values or as an
index into a list of colors. This series of pixels, also called a bitmap, is often stored in a
compressed format. Since most modern display devices are also raster devices, displaying
an image requires a viewer program to do little more than uncompress the bitmap and
transfer it to the screen.

Figure 1-1. Raster graphic rectangle

1.1.2 Vector Graphics

In a vector graphic system, an image is described as a series of geometric shapes (see
Figure 1-2). Rather than receiving a finished set of pixels, a vector viewing program
receives commands to draw shapes at specified sets of coordinates.

Figure 1-2. Vector graphic rectangle

 14

If you think of producing an image on graph paper, raster graphics work by describing
which squares should be filled in with which colors. Vector graphics work by describing
the grid points at which lines or curves are to be drawn. Some people describe vector
graphics as a set of instructions for a drawing, while bitmap graphics (rasters) are points
of color in specific places. Vector graphics "understand" what they are — a square
"knows" it's a square and text "knows" that it's text. Because they are objects rather than a
series of pixels, vector objects can change their shape and color, whereas bitmap graphics
cannot. Also, all text is searchable because it really is text, no matter how it looks or how
it is rotated or transformed.

Another way to think of raster graphics is as paint on canvas, while vector graphics are
lines and shapes made of a stretchable material which can be moved around on a
background.

1.1.3 Uses of Raster Graphics

Raster graphics are most appropriate for use with photographs, which are rarely
composed of distinct lines and curves. Scanned images are often stored as bitmaps; even
though the original may be "line art," we want to store the image as a whole and don't
care about its individual components. A fax machine, for example, doesn't care what
you've drawn; it simply transmits pixels from one place to another in raster form.

Tools for creating images in raster format are widespread and generally easier to use than
many vector-based tools. There are many different ways to compress and store a raster
image, and the internal representation of these formats is public. Program libraries to read
and write images in compressed formats such as JPEG, GIF, and PNG are widely
available. These are some of the reasons that web browsers have, until the arrival of SVG,
supported only raster images.

1.1.4 Uses of Vector Graphics

Vector graphics are used in:

• Computer Assisted Drafting (CAD) programs, where accurate measurement and
the ability to zoom in on a drawing to see details are essential

• Programs such as Adobe Illustrator, which are used to design graphics that will be
printed on high-resolution printers

 15

• The Adobe PostScript printing and imaging language; every character that you
print is described in terms of lines and curves

• The vector-based Macromedia Flash system for designing animations,
presentations, and web sites

Because most of these files are encoded in binary format or as tightly packed bitstreams,
it is difficult for a browser or other user agent to parse out embedded text, or for a server
to dynamically create vector graphic files from external data. Most of the internal
representations of vector graphics are proprietary, and code to view or create them is not
generally available.

1.2 Scalability

Although they are not as popular as raster graphics, vector graphics have one feature that
makes them invaluable in many applications — they can be scaled without loss of image
quality. As an example, here are two drawings of a cat. Figure 1-3 was made with raster
graphics; Figure 1-4 is a vector image. Both are shown as they appear on a screen that
displays 72 pixels per inch.

Figure 1-3. Raster image of cat

Figure 1-4. Vector image of cat

When a display program zooms in on the raster graphic, it must find some way to expand
each pixel. The simplest approach to zooming in by a factor of four is to make each pixel
four times as large. The results, shown in Figure 1-5, are not particularly pleasing.

Figure 1-5. Expanded raster image

 16

Although it is possible to use techniques such as edge-detection and anti-aliasing to make
the expanded image more pleasing, these techniques are time-consuming. Furthermore,
since all the pixels in a raster graphic are equally anonymous, there's no guarantee that an
algorithm can correctly detect edges of shapes. Anti-aliasing results in something like
Figure 1-6.

Figure 1-6. Expanded anti-aliased raster image

Expanding a vector image by a factor of four, on the other hand, merely requires the
display program to multiply all the coordinates of the shapes by four and redraw them at
the full resolution of the display device. Thus, Figure 1-7, which is also a screenshot from
a 72 dot per inch screen, shows crisp, clear edges on the lines with significantly less of
the stair-step effects of the expanded raster image.

Figure 1-7. Expanded vector image

 17

1.3 SVG's Role

In 1998, the World Wide Web Consortium formed a working group to develop a
representation of vector graphics as an XML application. Because SVG is an XML
application, the information about an image is stored as plain text, and it brings the
advantages of XML's openness, transportability, and interoperability.

CAD and graphic design programs often store drawings in a proprietary binary format.
By adding the ability to import and export drawings in SVG format, applications gain a
common, standard format for interchanging information.

Since it is an XML application, SVG cooperates with other XML applications. A
mathematics textbook, for example, could use XSL Formatting Objects for explanatory
text, MathML to describe equations, and SVG to generate the graphs for the equations.

The SVG working group's specification is an official World Wide Web Consortium
Recommendation. Some applications such as Adobe Illustrator and Jasc WebDraw export
drawings in SVG format. On the Web, SVG viewer plug-ins let users view presentations
with many of the same scripting and animation capabilities that Flash has. Since the SVG
files are XML, text in the SVG display is available to any user agent that can parse XML.

1.4 Creating an SVG Graphic

In this section, we will write an SVG file that produces the image of the cat that we
showed earlier in the chapter. This example introduces many of the concepts that we will
explain in further detail in subsequent chapters. This file will be a good example of how
to write an example file, which is not necessarily the way you should write an SVG file
that will be part of a finished project.

 18

1.4.1 Document Structure

We start Example 1-1 with the standard XML processing instruction and DOCTYPE
declaration. The root <svg> element defines the width and height of the finished
graphic in pixels. The <title> element's content is available to a viewing program for
use in a title bar or as a tooltip pointer, and the <desc> element lets you give a full
description of the image.

Example 1-1. Basic structure of an SVG document

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="140" height="170">
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>
<!-- the drawing will go here -—>

</svg>

1.4.2 Basic Shapes

We draw the cat's face by adding a <circle> element. The element's attributes specify
the center x-coordinate, center y-coordinate, and radius. The (0,0) point is the upper left
corner of the picture. x coordinates increase as you move horizontally to the right; y
coordinates increase as you move vertically downwards.

The circle's location and size are part of the drawing's structure. The color in which it is
drawn is part of its presentation. As is customary with XML applications, we want to
separate structure and presentation for maximum flexibility. Presentation information is
contained in the style attribute. Its value will be a series of presentation properties and
values, as described in Appendix B, in Section B.1. We'll use a stroke color of black for
the outline, and a fill color of none to make the face transparent. The SVG is shown in
Example 1-2, and its result in Figure 1-8.

Example 1-2. Basic shapes -- circle

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="140" height="170">
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none" />

</svg>

Figure 1-8. Stage one -- circle

 19

1.4.3 Specifying Styles as Attributes

Now we add two more circles for the eyes in Example 1-3. Although their fill and stroke
colors are really part of the presentation, SVG does allow you to specify them as
individual attributes. In this example we specify the fill and stroke colors as two
separate attributes rather than inside a style attribute. You probably won't use this
method often; we'll discuss it further in Chapter 4, in Section 4.2.4. We've put it here just
to prove that it can be done. The results are shown in Figure 1-9.

The <?xml ...?> and <?DOCTYPE?> have been omitted to save space in the listing.

Example 1-3. Basic shapes -- filled circles

<svg width="140" height="170">
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none" />
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933" />
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933" />

</svg>

Figure 1-9. Stage two -- face and eyes

1.4.4 Grouping Graphic Objects

Example 1-4 adds the whiskers on the right side of the cat's face with two <line>
elements. We want to treat these whiskers as a unit (you'll see why in a moment), so we
enclose them in the <g> grouping element, and give it an id. A line is specified by giving
the x- and y-coordinates for its starting point (x1 and y1) and ending point (x2 and y2).
The result is displayed in Figure 1-10.

Example 1-4. Basic shapes -- lines

<svg width="140" height="170">

 20

<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none;" />
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933" />
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933" />
<g id="whiskers">

 <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;" />
 <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;" />
</g>

</svg>

Figure 1-10. Stage three -- right whiskers

1.4.5 Transforming the Coordinate System

Now we will <use> the whiskers group, and transform them into the left whiskers.
Example 1-5 first flips the coordinate system by multiplying the x-coordinates by
negative one in a scale transformation. This means that the point (75, 95) is now located
at at the place which would have been (-75, 95) in the original coordinate system. In the
new scaled system, coordinates increase as you move left. This means we have to
translate (move) the coordinate system 140 pixels right, the negative direction, to get
them where we want them as shown in Figure 1-11.

Example 1-5. Transforming the coordinate system

<svg width="140" height="170">
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none;" />
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933" />
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933" />
<g id="whiskers">

 <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;" />
 <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;" />
</g>
<use xlink:href="#whiskers" transform="scale(-1 1) translate(-140 0)" />

</svg>

Figure 1-11. Stage four -- left whiskers

 21

The transform attribute's value lists the transformations, one after another, separated by
whitespace.

1.4.6 Other Basic Shapes

Example 1-6 constructs the ears and mouth with the <polyline> element, which takes
pairs of x- and y-coordinates as the points attribute. You separate the numbers with
either blanks or commas as you please. The result is in Figure 1-12.

Example 1-6. Basic shapes -- polylines

<svg width="140" height="170">
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none;" />
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933" />
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933" />
<g id="whiskers">

 <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;" />
 <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;" />
</g>
<use xlink:href="#whiskers" transform="scale(-1 1) translate(-140 0)” />
<!— ears -->
<polyline points="108 62, 90 10, 70 45, 50, 10, 32, 62"

 style="stroke: black; fill: none;" />
<!-- mouth -->
<polyline points="35 110, 45 120, 95 120, 105, 110"

 style="stroke: black; fill: none;" />
</svg>

Figure 1-12. Stage five -- ears and mouth

 22

1.4.7 Paths

All of the basic shapes are actually shortcuts for the more general <path> element, which
Example 1-7 uses to add the cat's nose. The result is in Figure 1-13. This element has
been designed to make specifying a path, or sequence of lines and curves, as compact as
possible. The path in Example 1-7 translates, in words, to: "Move to coordinate (75,90).
Draw a line to coordinate (65,90). Draw an elliptical arc with an x-radius of 5 and a
y-radius of 10, ending back at coordinate (75,90)."

Example 1-7. Paths

<svg width="140" height="170">
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none;" />
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933" />
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933" />
<g id="whiskers">

 <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;" />
 <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;" />
</g>
<use xlink:href="#whiskers" transform="scale(-1 1) translate(-140 0)" />

<!-- ears -->
<polyline points="108 62, 90 10, 70 45, 50, 10, 32, 62"

 style="stroke: black; fill: none;" />

<!-- mouth -->
<polyline points="35 110, 45 120, 95 120, 105, 110"

 style="stroke: black; fill: none;" />

<!-- nose -->
<path d="M 75 90 L 65 90 A 5 10 0 0 0 75 90"

 style="stroke: black; fill: #ffcccc" />
</svg>

Figure 1-13. Stage six -- nose

1.4.8 Text

Finally, since this picture is so crudely drawn, there's a good chance that people will not
know it is a cat. Hence, Example 1-8 adds text to the picture as a label. In the <text>

 23

element, the x and y attributes which specify the text's location are part of the structure.
The font family and font size are part of the presentation, and thus part of the style
attribute. Unlike the other elements we've seen, <text> is a container element, and its
content is the text we want to display. Figure 1-14 shows the final result.

Figure 1-14. Stage seven -- text and finished image

Example 1-8. Text

<svg width="140" height="170">
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none;" />
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933" />
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933" />
<g id="whiskers">

 <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;" />
 <line x1="75" y1="95" x2="135" y2="105" style="stroke: black; " />
</g>
<use xlink:href="#whiskers" transform="scale(-1 1) translate(-140 0)" />

<!-- ears -->
<polyline points="108 62, 90 10, 70 45, 50, 10, 32, 62"

 style="stroke: black; fill: none;" />
<!-- mouth -->
<polyline points="35 110, 45 120, 95 120, 105, 110"

 style="stroke: black; fill: none;" />

<!-- nose -->
<path d="M 75 90 L 65 90 A 5 10 0 0 0 75 90"

 style="stroke: black; fill: #ffcccc" />
<text x="60" y="165" style="font-family: sans-serif; font-size: 14pt;

 stroke: none; fill: black;">Cat</text>
</svg>

That concludes our brief overview of SVG; in the following chapters we'll examine these
concepts in depth.

 24

Chapter 2. Coordinates

The world of SVG is an infinite canvas. In this chapter, we'll discuss how you tell a
viewer program which part of this canvas you're interested in, what its dimensions are,
and how you locate points within that area.

2.1 The Viewport

The area of the canvas that your document intends to use is called the viewport. You
establish the size of this viewport with the width and height attributes on the <svg>
element. The values of these attributes can be simply a number, which is presumed to be
in pixels; this is said to be specified in user coordinates. You may also specify width and
height as a number followed by a unit identifier, which can be one of the following:

em

The font size of the default font, usually equivalent to the height of a character

ex

The height of the letter x

px

Pixels

pt

Points (1/72 of an inch)

pc

Picas (1/6 of an inch)

cm

Centimeters

mm

Millimeters

in

Inches

Examples:

 25

<svg width="200" height="150">
<svg width="200px" height="200px">

Both of these specify an area 200 pixels wide and 150 pixels tall.

<svg width="2cm" height="3cm">

Specifies an area two centimeters wide and three centimeters high.

<svg width="2cm" height="36pt">

It is possible, though unusual, to mix units; this element specifies an area two
centimeters wide and thirty-six points high.

If you have one <svg> element nested within another <svg> element, the nested tag may
also specify its width and height as a percentage, measured in terms of the enclosing
element. We will see nested <svg> elements in Section 2.5.

2.2 Using Default User Coordinates

When you do not use unit specifiers on your <svg> element, the viewer sets up a
coordinate system where the horizontal, or x-coordinate, increases as you go to the right,
and the vertical, or y-coordinate, increases as you move vertically downward. The upper
left corner of the viewport is defined to have an x- and y-coordinate of zero.[1] This point,
written as (0, 0) is also called the origin. The coordinate system is a pure geometric
system; points have neither width nor height, and the grid lines are considered infinitely
thin. We'll return to this subject in Chapter 3.

[1] In this book, we will specify a pair of x- and y-coordinates in parentheses, with the
x-coordinate first. Thus, (10, 30) represents an x-coordinate of 10 and a y-coordinate of
30.

Example 2-1 establishes a viewport two hundred pixels wide and two hundred pixels high,
then draws a rectangle whose upper left corner is at coordinate (10, 10) with a width of
50 pixels and a height of 30 pixels.[2] Figure 2-1 shows the result, with rulers and a grid to
show the coordinate system.

[2] To save space, we are leaving out the <?xml ...?> and <!DOCTYPE ...> lines.
These are set in stone, so you can take them for granite.

Example 2-1. Using default coordinates

<svg width="200" height="200">
 <rect x="10" y="10" width="50" height="30"
 style="stroke: black; fill: none;" />
</svg>

Figure 2-1. Rectangle using default coordinates

 26

Even if you don't specify units in the viewport, you may still use them in some SVG
shape elements, as we do in Example 2-2. Figure 2-2 shows the result, with rulers and a
grid to show the coordinate system.

Example 2-2. Explicit use of units

<svg width="200" height="200">
 <rect x="10mm" y="10mm" width="15mm" height="10mm"
 style="stroke:black; fill:none;" />
</svg>

Specifying units in the <svg> element does not affect coordinates given without units in
other elements. Example 2-3 shows a viewport set up in millimeters, but the rectangle is
still drawn at pixel (user) coordinates, as you see in Figure 2-3.

Example 2-3. Units on the svg element

<svg width="70mm" height="70mm">
<rect x="10" y="10" width="50" height="30"

 style="fill: none; stroke: black;" />
</svg>

Figure 2-2. Rectangle using explicit units

Figure 2-3. Viewport with units; rectangle without units

 27

2.3 Specifying User Coordinates for a Viewport

In the examples so far, numbers without units have been considered to be pixels.
Sometimes this is not what you want. For example, you might want to set up a system
where each user coordinate represents one-sixteenth of a centimeter. (We're using this
coordinate system to prove a point, not to show a paragon of good design.) In this system,
a square that is 40 units by 40 units will display as 2.5 centimeters on a side.

To accomplish this effect, you set the viewBox attribute on the <svg> element. The value
of this attribute consists of four numbers that represent the minimum x-coordinate,
minimum y-coordinate, width, and height of the user coordinate system that you want to
superimpose on the viewport.

So, to set up the sixteen-units-per-centimeter coordinate system for a four centimeter by
five centimeter drawing, you'd use this starting tag:

<svg width="4cm" height="5cm" viewBox="0 0 64 80">

Example 2-4 lists the SVG for a picture of a house, displayed using the new coordinate
system.

Example 2-4. Using a viewBox

<svg width="4cm" height="5cm" viewBox="0 0 64 80">
 <rect x="10" y="35" width="40" height="40"
 style="stroke: black; fill: none;" />
 <!-- roof -->
 <polyline points="10 35, 30 7.68, 50 35"
 style="stroke:black; fill: none;" />
 <!-- door -->
 <polyline points="30 75, 30 55, 40 55, 40 75"
 style="stroke:black; fill: none;" />
</svg>

Figure 2-4 shows the result. The grid and darker numbers show the new user coordinate
system; the lighter numbers are positioned at one-centimeter intervals.

 28

Figure 2-4. New user coordinates

The numbers you specify for the value of the viewBox attribute may be separated by
commas or whitespace. If either the width or height is zero, none of your graphic will
display. It is an error to specify a negative value for the viewBox width or height.

2.4 Preserving Aspect Ratio

In the previous example, the aspect ratio, or ratio of width to height, of the viewport and
the viewBox were identical (4/5 = 64/80). What happens, though, if the aspect ratio of the
viewport and the viewBox are not the same, as in this example, where viewBox has an
aspect ratio of one to one, but the viewport has an aspect ratio of one to three?

<svg width="45px" height="135px" viewBox="0 0 90 90">

There are three things that SVG can do in this situation:

• Scale the graphic uniformly according to the smaller dimension so the graphic
will fit entirely into the viewport. In the example, the picture would become half
its original width and height. We'll show you examples of this in Section 2.4.2.

• Scale the graphic uniformly according to the larger dimension and cut off the
parts that lie outside the viewport. In the example, the picture would become one
and a half times its original width and height. We'll show you examples in Section
2.4.3.

• Stretch and squash the drawing so that it fits precisely into the new viewport.
(That is, don't preserve the aspect ratio at all.) We will cover this in Section 2.4.4.

In the first case, since the image will be smaller than the viewport in one dimension, you
must specify where to position it. In the example, the picture will be scaled uniformly to a
width and height of 45 pixels. The width of the reduced graphic fits the width of the

 29

viewport perfectly, but you must now decide whether the image meets (is aligned with)
the top, middle, or bottom of the 135-pixel viewport height.

In the second case, since the image will be larger than the viewport in one dimension, you
must specify which area is to be sliced away. In the example, the picture will be scaled
uniformly to a width and height of 135 pixels. Now the height of the graphic fits the
viewport perfectly, but you must decide whether to slice off the right side, left side, or
both edges of the picture to fit within the 45-pixel viewport width.

2.4.1 Specifying Alignment for preserveAspectRatio

The preserveAspectRatio attribute lets you specify the alignment of the scaled image
with respect to the viewport, and whether you want it to meet the edges or be sliced off.
The model for this attribute is:

preserveAspectRatio="alignment [meet | slice]"

where alignment specifies the axis and location, and is one of xMinYMin, xMinYMid,
xMinYMax, xMidYMin, xMidYMid, xMidYMax, xMaxYMin, xMaxYMid, or xMaxYMax. This
alignment specifier is formed by concatenating an x-alignment and a y-alignment as
shown in Table 2-1. The default value for preserveAspectRatio is xMidYMid meet.

The y-alignment begins with a capital letter, since the x- and
y-alignments are concatenated into a single word.

Table 2-1. Values for alignment portion of

preserveAspectRatio
X alignment

Value Action
xMin Align minimum x of viewBox with left corner of

viewport.

xMid Align midpoint x value of viewBox with
midpoint x value of viewport.

xMax Align maximum x value of viewBox with right
corner of viewport.

Y alignment
Value Action
YMin Align minimum y of viewBox with top edge of

viewport.

YMid Align midpoint y value of viewBox with
midpoint y value of viewport.

YMax Align maximum y value of viewBox with bottom
edge of viewport.

 30

So, if you want to have the picture with a viewBox="0 0 90 90" fit entirely within a
viewport that is 45 pixels wide and 135 pixels high, aligned at the top of the viewport,
you would write:

<svg width="45px" height="135px" viewBox="0 0 90 90"
 preserveAspectRatio="xMinYMin meet">

In this case, since the width fits precisely, the x-alignment is
irrelevant; you could equally well use xMidYmin or xMaxYMin.
However, in the interests of consistency, it's usually best to make
both specifiers the same when only one axis is affected.

This is all fairly abstract; here are some concrete examples that show you how the
combinations of alignment and meet and slice interact with one another.

2.4.2 Using the meet Specifier

The starting <svg> tags in Example 2-5 all use the meet specifier.

Example 2-5. Use of meet specifier

<!-- tall viewports -->
<svg preserveAspectRatio="xMinYMin meet" viewBox="0 0 90 90"
 width="45" height="135">

<svg preserveAspectRatio="xMidYMid meet" viewBox="0 0 90 90"
 width="45" height="135">

<svg preserveAspectRatio="xMaxYMax meet" viewBox="0 0 90 90"
 width="45" height="135">

<!-- wide viewports -->
<svg preserveAspectRatio="xMinYMin meet" viewBox="0 0 90 90"
 width="135" height="45">

<svg preserveAspectRatio="xMidYMid meet" viewBox="0 0 90 90"
 width="135" height="45">

<svg preserveAspectRatio="xMaxYMax meet" viewBox="0 0 90 90"
 width="135" height="45">

Figure 2-5 shows where the reduced image fits into the enclosing viewBox.

Figure 2-5. meet -- viewBox fits in viewport

 31

2.4.3 Using the slice Specifier

Figure 2-6 shows the use of the slice specifier to eliminate parts of the picture that do
not fit in the viewport. They were created with the <svg> tags in Example 2-6.

Example 2-6. Use of slice specifier

<!-- tall viewports -->
<svg preserveAspectRatio="xMinYMin slice" viewBox="0 0 90 90"
 width="45" height="135">

<svg preserveAspectRatio="xMidYMid slice" viewBox="0 0 90 90"
 width="45" height="135">

<svg preserveAspectRatio="xMaxYMax slice" viewBox="0 0 90 90"
 width="45" height="135">

<!-- wide viewports -->
<svg preserveAspectRatio="xMinYMin slice" viewBox="0 0 90 90"
 width="135" height="45">

<svg preserveAspectRatio="xMidYMid slice" viewBox="0 0 90 90"
 width="135" height="45">

<svg preserveAspectRatio="xMaxYMax slice" viewBox="0 0 90 90"
 width="135" height="45">

Figure 2-6. slice -- graphic fills viewport

 32

2.4.4 Using the none Specifier

Finally, there is the third option for scaling a graphic when the viewBox and viewPort
don't have the same aspect ratio. If you specify preserve- AspectRatio="none", then
the graphic will be scaled non-uniformly so that its user coordinates fit the viewport.
Figure 2-7 shows such a "fun-house mirror" effect produced with the <svg> tags in
Example 2-7.

Example 2-7. Aspect ratio not preserved

<!-- tall viewport -->
<svg preserveAspectRatio="none" viewBox="0 0 90 90"
 width="45" height="135">

<!-- wide viewport -->
<svg preserveAspectRatio="none" viewBox="0 0 90 90"
 width="135" height="45">

Figure 2-7. Aspect ratio not preserved

2.5 Nested Systems of Coordinates

 33

You can establish a new viewport and system of coordinates at any time by putting
another <svg> element into your document. The effect is to create a "mini-canvas" upon
which you can draw. We used this technique to create illustrations such as Figure 2-5.
Rather than drawing the rectangles, then rescaling and positioning the cat inside each one
(the brute force approach), we took these steps:

• Draw the blue rectangles on the main canvas
• For each rectangle, define a new <svg> element with the appropriate

preserveAspectRatio attribute
• Draw the cat into that new canvas (with <use>), and let SVG do the heavy lifting

Here's a simplified example that shows a circle on the main canvas, then inside a new
canvas that's outlined by a blue rectangle that's also on the main canvas. Figure 2-8 is the
result we wish to achieve.

Figure 2-8. Nested viewport example

First, generate the SVG for the main coordinate system and the circle. Note that we've
established the user coordinates to coincide exactly with the viewport in this document.

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <circle cx="25" cy="25" r="25" style="stroke: black; fill: none;" />
</svg>

The result is in Figure 2-9.

Figure 2-9. Circle in main viewport

Now, draw the boundary of the box showing where we want the new viewport to be:

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <circle cx="25" cy="25" r="25" style="stroke: black; fill: none;" />
 <rect x="100" y="5" width="30" height="80"
 style="stroke: blue; fill: none;" />
</svg>

This produces Figure 2-10.

 34

Figure 2-10. Circle and boundary box in main viewport

Now, add another <svg> element for the new viewport. In addition to specifying the
viewBox, width, height, and preserveAspectRatio specification, you may also
specify the x and y attributes — in terms of the enclosing <svg> element — where the
new viewport is to be established. (If you don't give values for x and y, they are presumed
to be zero.)

<svgwidth="200px" height="200px" viewBox="0 0 200 200">
 <circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>
 <rect x="100" y="5" width="30" height="80"
 style="stroke: blue; fill: none;" />

 <svg x="100px" y="5px" width="30px" height="80px" viewBox="0 0 50 50"
 preserveAspectRatio="xMaxYMax meet">
 </svg>
</svg>

Setting up the new coordinates with this nested <svg> element doesn't change the visual
display, but it does permit you to add the circle in that new system, producing the result
shown in Figure 2-8.

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>
 <rect x="100" y="5" width="30" height="80" style="stroke: blue;
 fill: none;"/>

 <svg x="100px" y="5px" width="30px" height="80px" viewBox="0 0 50 50"
 preserveAspectRatio="xMaxYMax meet">
 <circle cx="25" cy="25" r="25" style="stroke: black;
 fill: none;"/>
 </svg>
</svg>

 35

Chapter 3. Basic Shapes

Once a coordinate system is established in the <svg> tag, you are ready to begin drawing.
In this chapter, we will show the basic shapes you can use to create the major elements of
most drawings: lines, rectangles, polygons, circles, and ellipses.

3.1 Lines

SVG lets you draw a straight line with the <line> element. Just specify the x- and
y-coordinates of the line's endpoints. Coordinates may be specified without units, in
which case they are considered to be user coordinates, or with units such as em, in, etc. as
described in Chapter 2, in Section 2.1. The SVG in Example 3-1 draws several lines; the
reference grid in Figure 3-1 is not part of the SVG that you see here.

<line x1="start-x" y1="start-y"
 x2="end-x" y2="end-y">

Example 3-1. Basic lines

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <!-- horizontal line -->
 <line x1="40" y1="20" x2="80" y2="20" style="stroke: black;" />

 <!-- vertical line -->
 <line x1="0.7cm" y1="1cm" x2="0.7cm" y2="2.0cm" style="stroke: black;" />

 <!-- diagonal line -->
 <line x1="30" y1="30" x2="85" y2="85" style="stroke: black;" />
</svg>

Figure 3-1. Basic lines

3.2 Stroke Characteristics

Lines are considered to be strokes of a pen that draws on the canvas. The size, color, and
style of the pen stroke are part of the line's presentation. Thus, these characteristics will
go into the style attribute.

 36

3.2.1 stroke-width

As mentioned in Chapter 2, the canvas grid lines are infinitely thin. Where, then, does a
line or stroke fall in relation to the grid line? The answer is that the grid line falls in the
center of a stroke. Example 3-2 draws some lines where the stroke width has been set to
ten user coordinates to make the effect obvious. The result, in Figure 3-2, has the grid
lines drawn in so you can see the effect clearly.

Example 3-2. Demonstration of stroke-width

<svg width="200px" height="200px" viewBox="0 0 200 200">

 <!-- horizontal line -->
 <line x1="30" y1="10" x2="80" y2="10"
 style="stroke-width: 10; stroke: black;" />

 <!-- vertical line -->
 <line x1="10" y1="30" x2="10" y2="80"
 style="stroke-width: 10; stroke: black;" />

 <!-- diagonal line -->
 <line x1="25" y1="25" x2="75" y2="75"
 style="stroke-width: 10; stroke: black;" />
</svg>

Figure 3-2. Demonstration of stroke-width

3.2.2 stroke Color

You can specify the stroke color in a variety of ways:

• One of the color keyword names: aqua, black, blue, fuchsia, gray, green,
lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow.

• A six-digit hexadecimal specifier in the form #rrggbb, where rr is the red
component, gg is the green component, and bb is the blue component in the range
0-ff.

• A three-digit hexadecimal specifier in the form #rgb, where r is the red
component, g is the green component, and b is the blue component in the range

 37

0-f. This is a shorthand form of the previous method of specifying color. To
produce the six-digit equivalent, each digit of the short form is duplicated; thus
#d6e is the same as #dd66ee.

• An rgb specifier in the form rgb(red-value, green-value, blue-value),
where each value is in the range 0-255 or a percentage in the range 0% to 100%.
Example 3-3 uses all of these methods, with the colorful results of Figure 3-3.

It is also possible to use one of the color keywords listed in section 4.2 of the SVG
specification at http://www.w3.org/TR/SVG/types.html#ColorKeywords, or one of the
CSS 2 system color keywords as listed at
http://www.w3.org/TR/REC-CSS2/ui.html#system-colors

Example 3-3. Demonstration of stroke color

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <!-- red -->
 <line x1="10" y1="10" x2="50" y2="10"
 style="stroke: red; stroke-width: 5;" />

 <!-- light green -->
 <line x1="10" y1="20" x2="50" y2="20"
 style="stroke: #9f9; stroke-width: 5;" />

 <!-- light blue -->
 <line x1="10" y1="30" x2="50" y2="30"
 style="stroke: #9999ff; stroke-width: 5;" />

 <!-- medium orange -->
 <line x1="10" y1="40" x2="50" y2="40"
 style="stroke: rgb(255, 128, 64); stroke-width: 5;" />

 <!-- deep purple -->
 <line x1="10" y1="50" x2="50" y2="50"
 style="stroke: rgb(60%, 20%, 60%); stroke-width: 5;" />
</svg>

Figure 3-3. Demonstration of stroke color

3.2.3 stroke-opacity

Up to this point, all the lines in the example have been solid, obscuring anything beneath
them. You control the opacity (which is the opposite of transparency) of a line by giving
the stroke-opacity a value from 0.0 to 1.0, where zero is completely transparent and

http://www.w3.org/TR/SVG/types.html#ColorKeywords
http://www.w3.org/TR/REC-CSS2/ui.html#system-colors

 38

one is completely opaque. A value less than zero will be changed to zero; a value greater
than one will be changed to one. Example 3-4 varies the opacity from 0.2 to 1 in steps of
0.2, with the result in Figure 3-4.

Example 3-4. Demonstration of stroke-opacity

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <line x1="10" y1="10" x2="50" y2="10"
 style="stroke-opacity: 0.2; stroke: black; stroke-width:
5;" />
 <line x1="10" y1="20" x2="50" y2="20"
 style="stroke-opacity: 0.4; stroke: black; stroke-width:
5;" />
 <line x1="10" y1="30" x2="50" y2="30"
 style="stroke-opacity: 0.6; stroke: black; stroke-width:
5;" />
 <line x1="10" y1="40" x2="50" y2="40"
 style="stroke-opacity: 0.8; stroke: black; stroke-width:
5;" />
 <line x1="10" y1="50" x2="50" y2="50"
 style="stroke-opacity: 1.0; stroke: black; stroke-width:
5;" />
</svg>

Figure 3-4. Demonstration of stroke-opacity

3.2.4 stroke-dasharray attribute

If you need dotted or dashed lines, use the stroke-dasharray attribute, whose value
consists of a list of numbers, separated by commas or white- space, specifying dash
length and gaps. The list should have an even number of entries, but if you give an odd
number of entries, SVG will repeat the list so the total number of entries is even. (See the
last instance in Example 3-5.)

Example 3-5. Demonstration of stroke-dasharray

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <!-- nine-pixel dash, five-pixel gap -->
 <line x1="10" y1="10" x2="100" y2="10"
 style="stroke-dasharray: 9, 5;
 stroke: black; stroke-width: 2;" />

 <!-- five-pixel dash, three-pixel gap, nine-pixel dash,
two-pixel gap -->

 39

 <line x1="10" y1="20" x2="100" y2="20"
 style="stroke-dasharray: 5, 3, 9, 2;
 stroke: black; stroke-width: 2;" />

 <!-- Odd number of entries is duplicated; this is equivalent
to:
 nine-pixel dash, three-pixel gap, five-pixel dash,
 nine-pixel gap, three-pixel dash, five-pixel gap -->
 <line x1="10" y1="30" x2="100" y2="30"
 style="stroke-dasharray: 9, 3, 5;
 stroke: black; stroke-width: 2;" />
</svg>

Figure 3-5 shows the results, zoomed in for clarity.

Figure 3-5. Demonstration of stroke-dasharray

3.3 Rectangles

The rectangle is the simplest of the basic shapes. You specify the x- and y-coordinates of
the upper left corner of the rectangle,[1] its width, and its height. The interior of the
rectangle is filled with the fill color you specify. If you do not specify a fill color, the
interior of the shape is filled with black. The fill color may be specified in any of the
ways described in Section 3.2.2, or it may take the value none to leave the interior
unfilled and thus transparent. You may also specify a fill-opacity in the same format
as you did in Section 3.2.3. Both fill and fill-opacity are presentation properties,
and belong in the style attribute.

[1] Technically, the x value is the smaller of the x-coordinate values and the y is
the smaller of the y-coordinate values of the rectangle's sides in the current user
coordinate system. Since we are not yet using transformations, which we will
cover in Chapter 5, this is the moral equivalent of the upper left corner.

After the interior is filled (if necessary), the outline of the rectangle is drawn with strokes,
whose characteristics you may specify as you did for lines. If you do not specify a stroke,
the value none is presumed, and no outline is drawn. Example 3-6 draws several
variations of the <rect> element. Figure 3-6 shows the result, with a grid for reference.

Example 3-6. Demonstration of the rectangle element

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <!-- black interior, no outline -->
 <rect x="10" y="10" width="30" height="50" />

 40

 <!-- no interior, black outline -->
 <rect x="50" y="10" width="20" height="40"
 style="fill: none; stroke: black;" />

 <!-- blue interior, thick semi-transparent red outline -->
 <rect x="10" y="70" width="25" height="30"
 style="fill: #0000ff;
 stroke: red; stroke-width: 7; stroke-opacity: 0.5;" />

 <!-- semi-transparent yellow interior, dashed green outline -->
 <rect x="50" y="70" width="35" height="20"
 style="fill: yellow; fill-opacity: 0.5;
 stroke: green; stroke-width: 2; stroke-dasharray: 5 2" />
</svg>

Figure 3-6. Demonstration of the rect element

Since the strokes that form the outline "straddle" the abstract grid
lines, the strokes will be half inside the shape and half outside the
shape. Figure 3-7, a closeup of the semi-transparent red outline
drawn in Example 3-6, shows this clearly.

Figure 3-7. Closeup of transparent border

If you do not specify a starting x or y value, it is presumed to be zero. If you specify a
width or height of zero, then the rectangle is not displayed. It is an error to provide
negative values for either width or height.

 41

3.3.1 Rounded Rectangles

If you wish to have rectangles with rounded corners, specify the x- and y-radius of the
corner curvature. The maximum number you may specify for rx (the x-radius) is one-half
the width of the rectangle; the maximum value of ry (the y-radius) is one-half the height
of the rectangle. If you specify only one of rx or ry, they are presumed to be equal.
Example 3-7 shows various combinations of rx and ry.

Example 3-7. Demonstration of rounded rectangles

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <!-- rx and ry equal, increasing -->
 <rect x="10" y="10" width="20" height="40" rx="2" ry="2"
 style="stroke: black; fill: none;" />

 <rect x="40" y="10" width="20" height="40" rx="5"
 style="stroke: black; fill: none;" />

 <rect x="70" y="10" width="20" height="40" ry="10"
 style="stroke: black; fill: none;" />

 <!-- rx and ry unequal -->
 <rect x="10" y="60" width="20" height="40" rx="10" ry="5"
 style="stroke: black; fill: none;" />

 <rect x="40" y="60" width="20" height="40" rx="5" ry="10"
 style="stroke: black; fill: none;" />
</svg>

Figure 3-8 shows the result, with a grid in the background for reference.

Figure 3-8. Demonstration of rounded rectangles

3.4 Circles and Ellipses

To draw a circle, use the <circle> element and specify the center x-coordinate, center
y-coordinate, and radius with the cx, cy, and r attributes. As with a rectangle, the default

 42

is to fill the circle with black and draw no outline unless you specify some other
combination of fill and stroke.

An ellipse also needs an x-radius and a y-radius in addition to a center x- and y-coordinate.
The attributes for these radii are named rx and ry.

In both circles and ellipses, if the cx or cy is omitted, it is presumed to be zero. If the
radius is zero, no shape will be displayed; it is an error to provide a negative radius.
Example 3-8 draws some circles and ellipses which are shown in Figure 3-9.

Example 3-8. Demonstration of circles and ellipses

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <circle cx="30" cy="30" r="20" style="stroke: black; fill: none;" />
 <circle cx="80" cy="30" r="20"
 style="stroke-width: 5; stroke: black; fill: none;" />

 <ellipse cx="30" cy="80" rx="10" ry="20"
 style="stroke: black; fill: none;" />
 <ellipse cx="80" cy="80" rx="20" ry="10"
 style="stroke: black; fill: none;" />
</svg>

Figure 3-9. Demonstration of circle and ellipse elements

3.5 The polygon Element

In addition to rectangles, circles, and ellipses, you may want to draw hexagons, octagons,
stars, or arbitrary closed shapes. The <polygon> element lets you specify a series of
points that describe a geometric area to be filled and outlined as described earlier. The
points attribute consists of a series of x- and y-coordinate pairs separated by commas or
whitespace. You must give an even number of entries in the series of numbers. You don't
have to return to the starting point; the shape will automatically be closed. Example 3-9
uses the <polygon> element to draw a parallelogram, a star, and an irregular shape.

Example 3-9. Demonstration of the polygon element

<svg width="200px" height="200px" viewBox="0 0 200 200">
<!-- parallelogram -->

 <polygon points="15,10 55, 10 45, 20 5, 20"
 style="fill: red; stroke: black;" />

 43

 <!-- star -->
 <polygon
 points="35,37.5 37.9,46.1 46.9,46.1 39.7,51.5
 42.3,60.1 35,55 27.7,60.1 30.3,51.5
 23.1,46.1 32.1,46.1"
 style="fill: #ccffcc; stroke: green;" />

 <!-- weird shape -->
 <polygon
 points="60 60, 65 72, 80 60, 90 90, 72 80, 72 85, 50 95"
 style="fill: yellow; fill-opacity: 0.5; stroke: black;
 stroke-width: 2;" />
</svg>

The results, with a grid in the background for reference, are displayed in Figure 3-10.

Figure 3-10. Demonstration of the polygon element

3.5.1 Filling Polygons That Have Intersecting Lines

For the polygons shown so far, it's been easy to fill the shape. Since none of the lines
forming the polygon cross over one another, the interior is easily distinguished from the
exterior of the shape. However, when lines cross over one another, the determination of
what is inside the polygon is not as easy. The SVG in Example 3-10 draws such a
polygon. In Figure 3-11, is the middle section of the star considered to be inside or
outside?

Example 3-10. Unfilled polygon with intersecting lines

<svg width="200px" height="200px" viewBox="0 0 200 200">

<polygon points="48,16 16,96 96,48 0,48 80,96"
 style="stroke: black; fill: none;" />
</svg>

Figure 3-11. Unfilled polygon with intersecting lines

 44

SVG has two different rules for determining whether a point is inside a polygon or
outside it. The fill-rule (which is part of presentation) has a value of either nonzero or
evenodd. Depending on the rule you choose, you get a different effect. Example 3-11
uses the rules to fill two diagrams of the star, as shown in Figure 3-12.

Example 3-11. Effect of different fill-rules

<svg width="200px" height="200px" viewBox="0 0 200 200">

<polygon style="fill-rule: nonzero; fill: yellow; stroke: black;"
 points="48,16 16,96 96,48 0,48 80,96" />

<polygon style="fill-rule: evenodd; fill: #00ff00; stroke: black;"
 points="148,16 116,96 196,48 100,48 180,96" />

</svg>

Figure 3-12. Effect of different fill-rules

Explanation of the Fill Rules

For the sake of completeness, we are describing how these fill-rules work,
but you don't need to know the details in order to use them. The nonzero rule
determines whether a point is inside or outside a polygon by drawing a line from
the point in question to infinity. It counts how many times that line crosses the
polygon's lines, adding one if the polygon line is going right to left, and
subtracting one if the polygon line is going left to right. If the total comes out to
zero, the point is outside the polygon. If the total is nonzero (hence the name)
the point is inside the polygon.

The evenodd rule also draws a line from the point in question to infinity, but it
simply counts how many times that line crosses your polygon's lines. If the total
number of crossings is odd, then the point is inside; if even, then the point is
outside.

 45

3.6 The polyline Element

Finally, to round out our discussion of basic shapes, we'll return to straight lines.
Sometimes you want a series of lines that does not make a closed shape. You can use
multiple <line> elements, but if there are many lines it might be easier to use the
<polyline> element. It has the same attributes as <polygon>, except that the shape is not
closed. Example 3-12 draws the symbol for an electrical resistor, shown in Figure 3-13.

Example 3-12. Example of the polyline element

<svg width="200px" height="200px" viewBox="0 0 200 200">
<polyline
 points="5 20, 20 20, 25 10, 35 30, 45 10,
 55 30, 65 10, 75 30, 80 20, 95 20"
 style="stroke: black; stroke-width: 3; fill: none;" />
</svg>

Figure 3-13. Example of the polyline element

It's best to set the fill property to none when using <polyline>;
otherwise, the SVG viewer attempts to fill the shape, sometimes with
startling results like those in Figure 3-14.

Figure 3-14. Example of filled polyline

3.7 Line Caps and Joins

When drawing a <line> or <polyline>, you may specify the shape of the endpoints of
the lines by setting the stroke-linecap style property to one of the values butt, round,
or square. Example 3-13 shows these three values, with gray guide lines showing the
actual endpoints of the lines. You can see in Figure 3-15 that round and square extend
beyond the end coordinates; butt, the default, ends exactly at the specified endpoint.

Example 3-13. Values of the stroke-linecap property

<line x1="10" y1="15" x2="50" y2="15"
 style="stroke-linecap: butt; stroke-width: 15;"/>

<line x1="10" y1="45" x2="50" y2="45"
 style="stroke-linecap: round; stroke-width: 15;"/>

 46

<line x1="10" y1="75" x2="50" y2="75"
 style="stroke-linecap: square; stroke-width: 15;"/>

<!-- guide lines -->
<line x1="10" y1="0" x2="10" y2="100" style="stroke: #999;" />
<line x1="50" y1="0" x2="50" y2="100" style="stroke: #999;" />

Figure 3-15. Values of the stroke-linecap attribute

You may specify the way lines connect at the corners of a shape with the
stroke-linejoin style property, which may have the values miter (pointed), round
(round -- what did you expect?), or bevel (flat). Example 3-14 produces the result shown
in Figure 3-16.

Example 3-14. Values of the stroke-linejoin attribute

<polyline
 style="stroke-linejoin: miter; stroke: black; stroke-width: 12;
 fill: none;"
 points="30 30, 45 15, 60 30"/>

<polyline
 style="stroke-linejoin: round; stroke: black; stroke-width: 12;
 fill: none;"
 points="90 30, 105 15, 120 30"/>

<polyline
 style="stroke-linejoin: bevel; stroke-width: 12; stroke: black;
 fill: none;"
 points="150 30, 165 15, 180 30"/>

Figure 3-16. Values of the stroke-linejoin attribute

If your lines meet at a sharp angle and have a mitered join, it's
possible for the pointed part to extend beyond the lines' thickness.
You may set the ratio of the miter to the thickness of the lines being
joined with the stroke-miterlimit style property; its default value
is 4.

3.8 Basic Shapes Reference Summary

 47

The following tables summarize the basic shapes and presentation styles in SVG.

3.8.1 Shape Elements

Table 3-1 summarizes the basic shapes available in SVG.

Table 3-1. Table of shape elements
Shape Description

<line x1="start-x" y1="start-y"
x2="end-x" y2="end-y"/>

Draws a line from the starting point at coordinates
(start-x, start-y) to the ending point at
coordinates (end-x, end-y).

<rect x="left-x" y="top-y"
width="width" height="height"/>

Draws a rectangle whose upper left corner is at
(left-x, top-y) with the given width and
height.

<circle cx="center-x" cy="center-y"
r="radius"/>

Draws a circle with the given radius, centered at
(center-x, center-y).

<ellipse cx="center-x" cy="center-y"
rx="x-radius" ry="y-radius"/>

Draws an ellipse with the given x-radius and
y-radius centered at (center-x, center-y).

<polygon
points="points-specifications"/>

Draws an arbitrary closed polygon whose outline is
described by the points-specification. The
points are specified as pairs of x- and y-coordinates.
These are user coordinates only; you may not add a
length unit specifier.

<polyline
points="points-specifications"/>

Draws an arbitrary series of connected lines as
described by the points-specification. The
points are specified as pairs of x- and y-coordinates.
These are user coordinates only; you may not add a
length unit specifier.

In all but the last two elements of Table 3-1, you may specify the attributes as simple
numbers, in which case they will be presumed to be measured in user coordinates, or you
may add a length unit specifier such as mm, pt, etc. For example:

<line x1="1cm" y1="30" width="50" height="10pt"/>

3.8.2 Specifying Colors

You may specify the color for filling or outlining a shape in one of the following ways:

• none, indicating that no outline is to be drawn or that the shape is not to be filled.
• A color name, which is one of aqua, black, blue, fuchsia, gray, green, lime,

maroon, navy, olive, purple, red, silver, teal, white, or yellow.
• Six hexadecimal digits #rrggbb, each pair describing red, green, and blue values.
• Three hexadecimal digits #rgb, describing the red, green, and blue values. This is

a shorthand for the previous method; digits are replicated so that #rgb is
equivalent to #rrggbb.

• rgb(r, g, b), each value ranging from 0-255 or from 0% to 100%.

 48

3.8.3 Stroke and Fill Characteristics

In order to see a line or the outline of a shape, you must specify the stroke characteristics,
using the following attributes. A shape's outline is drawn after its interior is filled. All of
these characteristics, summarized in Table 3-2, are presentation properties, and go in a
style attribute.

Table 3-2. Stroke characteristics
Attribute Values

stroke The stroke color, as described in Section 3.8.2.

stroke-width Width of stroke; may be given as user coordinates or with a length specifier. The
stroke width is centered along the abstract grid lines.

stroke-opacity A number ranging from 0.0 to 1.0; 0.0 is entirely transparent, 1.0 is entirely
opaque.

stroke-dasharray A series of numbers that tell the length of dashes and gaps with which a line is to
be drawn. These numbers are in user coordinates only.

stroke-linecap Shape of the ends of a line; has one of the values butt (the default), round, or
square.

stroke-linejoin
The shape of the corners of a polygon or series of lines; has one of the values
miter (pointed; the default), round, or bevel (flat).

stroke-miterlimit Maximum ratio of length of the miter point to the width of the lines being drawn;
the default value is 4.

You can control the way in which the interior of a shape is to be filled by using one of the
fill attributes shown in Table 3-3. A shape is filled before its outline is drawn.

Table 3-3. Fill characteristics
Attribute Values

fill The fill color, as described in Section 3.8.2.
fill-opacity A number ranging from 0.0 to 1.0; 0.0 is entirely transparent, 1.0 is entirely opaque.

fill-rule

This attribute can have the values nonzero or evenodd, which apply different rules
for determining whether a point is inside or outside a shape. These rules generate
different effects only when a shape has intersecting lines or "holes" in it. Details are in
Section 3.5.1 earlier in this chapter.

 49

Chapter 4. Document Structure

We've casually mentioned that SVG lets you separate a document's structure from its
presentation. In this chapter, we're going to compare and contrast the two, discuss the
presentational aspects of a document in more detail, and then show some of the SVG
elements that you can use to make your document's structure clearer, more readable, and
easier to maintain.

4.1 Structure and Presentation

As we mentioned in Chapter 1, in Section 1.4.2, one of XML's goals is provide a way to
structure data and separate this structure from its visual presentation. Consider the
drawing of the cat from that chapter; you recognize it as a cat because of its structure —
the position and size of the geometric shapes that make up the drawing. If we were to
make structural changes, such as shortening the whiskers, rounding the nose, and making
the ears longer and rounding their ends, the drawing would become one of a rabbit, no
matter what the surface presentation might be. The structure, therefore, tells you what a
graphic is.

This is not to say that information about visual style isn't important; had we drawn the cat
with thick purple lines and a gray interior, it would have been recognizable as a cat, but
its appearance would have been far less pleasing. These differences are shown in Figure
4-1, albeit without the color differences. XML encourages you to separate structure and
presentation; unfortunately, many discussions of XML emphasize structure at the
expense of presentation. We'll right this wrong by going into detail about how you
specify presentation in SVG.

Figure 4-1. Structure versus presentation

4.2 Using Styles with SVG

SVG lets you specify presentational aspects of a graphic in four ways; with inline styles,
internal stylesheets, external stylesheets, and presentation attributes. Let's examine each
of these in turn.

 50

4.2.1 Inline Styles

Example 4-1 uses inline styles. This is exactly the way we've been using presentation
information so far; we set the value of the style attribute to a series of visual properties
and their values as described in Appendix B, in Section B.1.

Example 4-1. Use of inline styles

<circle cx="20" cy="20" r="10" style="stroke: black; stroke-width: 1.5; fill:
blue; fill-opacity: 0.6" />

4.2.2 Internal Stylesheets

You don't need to place your styles inside each SVG element; you can create an internal
stylesheet to collect commonly-used styles that you can apply to all occurrences of a
particular element, or use as named classes to apply to individual elements. Example 4-2
sets up an internal stylesheet that will draw all circles in a blue double-thick dashed line
with a light yellow interior. We have placed the stylesheet within a <defs> element,
which we will discuss later in this chapter.

The example then draws several circles. The circles in the second row of Figure 4-2 have
inline styles that override the specification in the internal stylesheet.

Example 4-2. Use of internal stylesheet

<svg width="200px" height="200px" viewBox="0 0 200 200">
<defs>
<style type="text/css"><![CDATA[
 circle {
 fill: #ffc;
 stroke: blue;
 stroke-width: 2;
 stroke-dasharray: 5 3
 }
]]></style>
</defs>

<circle cx="20" cy="20" r="10"/>
<circle cx="60" cy="20" r="15"/>
<circle cx="20" cy="60" r="10" style="fill: #cfc"/>
<circle cx="60" cy="60" r="15" style="stroke-width: 1;
 stroke-dasharray: none;"/>
</svg>

Figure 4-2. Internal stylesheet with SVG

 51

4.2.3 External Stylesheets

If you want to apply a set of styles to multiple SVG documents, you could copy and paste
the internal stylesheet into each of them. This, of course, is impractical for a large volume
of documents if you ever need to make a global change to all the documents. Instead, you
should take all the information between the beginning and ending <style> tags
(excluding the <![CDATA[and]]>) and save it in an external file, which becomes an
external stylesheet. Example 4-3 shows an external stylesheet that has been saved in a file
named ext_style.css This stylesheet uses a variety of selectors, including *, which sets
a default for all elements that don't have any other style, and it, together with the SVG,
produces Figure 4-3.

Example 4-3. External stylesheet

* { fill:none; stroke: black; } /* default for all elements */

rect { stroke-dasharray: 7 3; }

circle.yellow { fill: yellow; }

.thick { stroke-width: 5; }

.semiblue { fill:blue; fill-opacity: 0.5; }

Figure 4-3. External stylesheet with SVG

Example 4-4 shows a complete SVG document (including <?xml ...?>,
<?xml-stylesheet ...?>, and the <!DOCTYPE>) that references the external stylesheet.

Example 4-4. SVG file that references an external stylesheet

<?xml version="1.0"?>
<?xml-stylesheet href="ext_style.css" type="text/css"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg width="200px" height="200px" viewBox="0 0 200 200"
 preserveAspectRatio="xMinYMin meet">

<line x1="10" y1="10" x2="40" y2="10"/>
<rect x="10" y="20" width="40" height="30"/>
<circle class="yellow" cx="70" cy="20" r="10"/>
<polygon class="thick" points="60 50, 60 80, 90 80"/>
<polygon class="thick semiblue"
 points="100 30, 150 30, 150 50, 130 50"/>
</svg>

 52

Inline styles will almost always render more quickly than styles in an
internal or external stylesheet; stylesheets and classes add rendering
time due to look up and parsing.

4.2.4 Presentation Attributes

Although the overwhelming majority of your SVG documents will use styles for
presentation information, SVG does permit you to specify this information in the form of
presentation attributes. Instead of saying:

<circle cx="10" cy="10" r="5"
 style="fill: red; stroke:black; stroke-width: 2;"/>

You may write each of the properties as an attribute:

<circle cx="10" cy="10" r="5"
 fill="red" stroke="black" stroke-width="2"/>

If you are thinking that this is mixing structure and presentation, you are right.
Presentation attributes do come in handy, though, when you are creating SVG documents
by converting an XML data source to SVG, as you will see in Chapter 12. In these cases
it can be easier to create individual attributes for each presentation property than to create
the contents of a single style attribute. You may also need to use presentation attributes
if the environment in which you will be placing your SVG cannot support stylesheets.

Presentation attributes are at the very bottom of the priority list. Any style specification
coming from an inline, internal, or external stylesheet will override a presentation
attribute. In the following SVG document, the circle will be filled in red, not green.

<svg width="200" height="200">
 <defs>
 <style type="text/css"><![CDATA[
 circle { fill: red; }
]]></style>
 </defs>
 <circle cx="20" cy="20" r="15" fill="green"/>
</svg>

Again, we emphasize that using style attributes or stylesheets should always be your
first choice. Stylesheets let you apply a complex series of fill and stroke characteristics to
all occurrences of certain elements within a document without having to duplicate the
information into each element, as presentation attributes would require. The power and
flexibility of stylesheets allow you to make significant changes in the look and feel of
multiple documents with a minimum of effort.

4.3 Document Structure – Grouping and Referencing Objects

 53

While it is certainly possible to define any drawing as an undifferentiated list of shapes
and lines, most non-abstract art consists of groups of shapes and lines that form
recognizable named objects. SVG has elements that let you do this sort of grouping to
make your documents more structured and understandable.

4.3.1 The g Element

The <g> element gathers all of its child elements as a group, and often has an id attribute
to give that group a unique name. Furthermore, each group may have its own <title>
and <desc> to identify it for text-based XML applications or to aid in accessibility for
visually-impaired users. In addition to the conceptual clarity that comes from the ability
to group and document objects, the <g> element also provides notational convenience.
Any styles you specify in the starting <g> tag will apply to all the child elements in the
group. In Example 4-5, this saves us from having to duplicate the style="fill:none;
stroke:black;" on every element shown in Figure 4-4. It is also possible to nest groups
within one another, although we won't show any examples of this until Chapter 5.

You may think of the <g> element as analogous to the Group Objects function in
programs such as Adobe Illustrator. It also serves a similar function to the concept of
layers in such programs; a layer is also a grouping of related objects.

Example 4-5. Simple use of the g element

<svg width="240px" height="240px" viewBox="0 0 240 240">
<title>Grouped Drawing</title>
<desc>Stick-figure drawings of a house and people</desc>

<g id="house" style="fill: none; stroke: black;">
 <desc>House with door</desc>
 <rect x="6" y="50" width="60" height="60"/>
 <polyline points="6 50, 36 9, 66 50"/>
 <polyline points="36 110, 36 80, 50 80, 50 110"/>
</g>

<g id="man" style="fill: none; stroke: black;">
 <desc>Male human</desc>
 <circle cx="85" cy="56" r="10"/>
 <line x1="85" y1="66" x2="85" y2="80"/>
 <polyline points="76 104, 85 80, 94 104" />
 <polyline points="76 70, 85 76, 94 70" />
</g>

<g id="woman" style="fill: none; stroke: black;">
 <desc>Female human</desc>
 <circle cx="110" cy="56" r="10"/>
 <polyline points="110 66, 110 80, 100 90, 120 90, 110 80"/>
 <line x1="104" y1="104" x2="108" y2="90"/>
 <line x1="112" y1="90" x2="116" y2="104"/>
 <polyline points="101 70, 110 76, 119 70" />
</g>
</svg>

 54

Figure 4-4. Grouped stick figure drawing

4.3.2 The use Element

Complex graphics often have repeated elements. For example, a product brochure may
have the company logo at the upper left and lower right of each page. If you were
drawing the brochure with a graphic design program, you'd draw the logo once, group all
its elements together, then copy and paste them to the other location. The SVG <use>
element gives you an analogous copy-and-paste ability with a group that you've defined
with <g>.

Once you have defined a group of graphic objects, you can display them again with the
<use> tag. To specify the group you wish to reuse, give its URI in an xlink:href
attribute, and specify the x and y location where the group's (0, 0) point should be moved
to. (We will see another way to achieve this effect in Chapter 5, in Section 5.1.) So, to
create another house and set of people as shown in Figure 4-5, you'd put these lines just
before the closing </svg> tag:

<use xlink:href="#house" x="70" y="100"/>
<use xlink:href="#woman" x="-80" y="100"/>
<use xlink:href="#man" x="-30" y="100"/>

Figure 4-5. Re-use of grouped stick figures

4.3.3 The defs Element

You may have noticed some drawbacks with the preceding example:

 55

• The math for deciding where to place the re-used man and woman requires you to
know the positions of the originals and use that as your base, rather than using a
simple number like zero.

• The fill and stroke color for the house were established by the original, and can't
be overriden by the <use>. This means you can't make a row of multi-colored
houses.

• The document draws all three groups: the woman, the man, and the house. You
can't "store them away" and draw only a set of houses or only a set of people.

The <defs> element solves these problems. By putting the grouped objects between the
beginning and ending <defs> tags, you instruct SVG to define them without displaying
them. The SVG specification, in fact, recommends that you put all objects that you wish
to re-use within a <defs> element so that SVG viewers working in a streaming
environment can process data more efficiently. In Example 4-6, the house, man, and
woman are defined so that their upper left corner is at (0, 0), and the house is not given
any fill color. Since the groups will be within the <defs> element, they will not be drawn
on the screen right away, and will serve as a "template" for future use. We have also
constructed another group named couple, which, in turn, <use>s the man and woman
groups. (Note that the bottom half of Figure 4-6 can't use couple, since the woman is to
the left of the man.)

Example 4-6. Example of the defs element

<svg width="240px" height="240px" viewBox="0 0 240 240">
<title>Grouped Drawing</title>
<desc>Stick-figure drawings of a house and people</desc>

<defs>
<g id="house" style="stroke: black;">
 <desc>House with door</desc>
 <rect x="0" y="41" width="60" height="60" />
 <polyline points="0 41, 30 0, 60 41" />
 <polyline points="30 101, 30 71, 44 71, 44 101" />
</g>

<g id="man" style="fill: none; stroke: black;">
 <desc>Male human</desc>
 <circle cx="10" cy="10" r="10"/>
 <line x1="10" y1="20" x2="10" y2="44" />
 <polyline points="1 58, 10 44, 19 58" />
 <polyline points="1 24, 10 30, 19 24" />
</g>

<g id="woman" style="fill: none; stroke: black;">
 <desc>Female human</desc>
 <circle cx="10" cy="10" r="10" />
 <polyline points="10 20, 10 34, 0 44, 20 44, 10 34" />
 <line x1="4" y1="58" x2="8" y2="44" />
 <line x1="12" y1="44" x2="16" y2="58" />
 <polyline points="1 24, 10 30, 19 24" />
</g>

 56

<g id="couple">
 <desc>Male and female human</desc>
 <use xlink:href="#man" x="0" y="0" />
 <use xlink:href="#woman" x="25" y="0" />
</g>
</defs>

<!-- make use of the defined groups -->
<use xlink:href="#house" x="0" y="0" style="fill: #cfc;" />
<use xlink:href="#couple" x="70" y="40" />

<use xlink:href="#house" x="120" y="0" style="fill: #99f;" />
<use xlink:href="#couple" x="190" y="40" />

<use xlink:href="#woman" x="0" y="145" />
<use xlink:href="#man" x="25" y="145" />
<use xlink:href="#house" x="65" y="105" style="fill: #c00;" />
</svg>

Figure 4-6. Result of using groups within defs

The <use> element is not restricted to using objects from the same file in which it occurs;
the xlink:href attribute may specify any valid file or URI. This makes it possible to
collect a set of common elements in one SVG file and use them selectively from other
files. For example, you could create a file named identity.svg that contains all of the
identity graphics that your organization uses:

<g id="company_mascot">
 <!-- drawing of company mascot -->
</g>

<g id="company_logo" style="stroke: none;">
 <polygon points="0 20, 20 0, 40 20, 20 40"
 style="fill: #696;" />
 <rect x="7" y="7" width="26" height="26"
 style="fill: #c9c;" />
</g>

<g id="partner_logo">
 <!-- drawing of company partner's logo -->

 57

</g>

and then refer to it with:

<use xlink:href="identity.svg#company_logo" x="200" y="200" />

4.3.4 The symbol Element

The <symbol> element provides another way of grouping elements. Unlike the <g>
element, a <symbol> is never displayed, so you don't have to enclose it in a <defs>
specification. However, it is customary to do so, since a symbol really is something
you're defining for later use. Additionally, symbols can specify viewBox and
preserveAspectRatio attributes, so that a symbol can fit into the viewport established
by the use element. Example 4-7 shows that the width and height are ignored for a
simple group (the top two octagons), but are used when displaying a symbol. The edges
of the lower right octagon in Figure 4-7 are cut off because the preserveAspectRatio
has been set to slice.

Example 4-7. Groups versus symbols

<svg width="200px" height="200px" viewBox="0 0 200 200">
<title>Symbols vs. groups</title>
<desc>Use</desc>

<defs>
<g id="octagon" style="stroke: black;">
 <desc>Octagon as group</desc>
 <polygon points="
 36 25, 25 36, 11 36, 0 25,
 0 11, 11 0, 25 0, 36 11"/>
</g>

<symbol id="sym-octagon" style="stroke: black;"
 preserveAspectRatio="xMidYMid slice" viewBox="0 0 40 40">
 <desc>Octagon as symbol</desc>
 <polygon points="
 36 25, 25 36, 11 36, 0 25,
 0 11, 11 0, 25 0, 36 11"/>
</symbol>
</defs>

<use xlink:href="#octagon" x="40" y="40" width="30" height="30"
 style="fill: #c00;"/>
<use xlink:href="#octagon" x="80" y="40" width="40" height="60"
 style="fill: #cc0;"/>
<use xlink:href="#sym-octagon" x="40" y="80" width="30" height="30"
 style="fill: #cfc;"/>
<use xlink:href="#sym-octagon" x="80" y="80" width="40" height="60"
 style="fill: #699;"/>
</svg>

Figure 4-7. Groups versus symbols

 58

4.3.5 The image Element

While <use> lets you re-use a portion of an SVG file, the <image> element includes an
entire SVG or raster file. If you are including an SVG file, the x, y, width, and height
attributes establish the viewport in which the referenced file will be drawn; if you're
including a raster file, it will be scaled to fit the rectangle that the attributes specify. You
can currently include either JPEG or PNG raster files. Example 4-8 shows how to include
a JPEG image with SVG; the result is in Figure 4-8.

Figure 4-8. JPEG image included in an SVG file

Example 4-8. Use of the image element

<svg width="310px" height="310px" viewBox="0 0 310 310">

<ellipse cx="154" cy="154" rx="150" ry="120" style="fill: #999999;"/> [1]
<ellipse cx="152" cy="152" rx="150" ry="120" style="fill: #cceeff;"/> [2]

<image xlink:href="kwanghwamun.jpg" [3]
 x="72" y="92" [4]
 width="160" height="120"/> [5]

</svg>

[1] Create a gray ellipse to simulate a drop shadow. [1]

 59

[1] We'll see another way to create a drop shadow in Chapter 10 in Section 10.2.

[2] Create the main blue ellipse. Since it occurs after the gray ellipse, it is displayed
above that object.

[3] Specify the URI of the file to include.

[4] Specify the upper left corner of the image.

[5] Specify the width and height to which the image should be scaled. If these aren't in
the same aspect ratio as the original picture, it will appear stretched or squashed.

 60

Chapter 5. Transforming the Coordinate System

Up to this point, all graphics have been displayed "as is." There will be times when you
have a graphic that you would like to move to a new location, rotate, or scale. To
accomplish these tasks, you add the transform attribute to the appropriate SVG elements.
This chapter examines the details of these transformations.

5.1 The translate Transformation

In Chapter 4, you saw that you can use x and y attributes with the <use> element to place
a group of graphic objects at a specific place. Look at the SVG in Example 5-1, which
defines a square and draws it at the upper left corner of the grid, then re-draws it with the
upper left corner at coordinates (50, 50). The dotted lines in Figure 5-1 aren't part of the
SVG, but serve to show the part of the canvas that we're interested in.

Example 5-1. Moving a graphic with use

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <g id="square">
 <rect x="0" y="0" width="20" height="20"
 style="fill: black; stroke-width: 2;"/>
 </g>
 <use xlink:href="#square" x="50" y="50"/>
</svg>

Figure 5-1. Result of moving with use

As it turns out, the x and y values are really a shorthand for one form of the more general
and more powerful transform attribute. Specifically, the x and y values are converted to
an attribute like transform="translate(x-value, y-value)", where translate is a
fancy technical term for "move." The x-value and y-value are measured in the current
user coordinate system. Let's use transform to get the same effect of making a second
square with its upper left corner at (50, 50). Example 5-2 lists the SVG.

Example 5-2. Moving the coordinate system with translation

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <g id="square">
 <rect x="0" y="0" width="20" height="20"

 61

 style="fill: none; stroke:black; stroke-width: 2;"/>
 </g>
 <use xlink:href="#square" transform="translate(50,50)"/>
</svg>

The resulting display will look exactly like that in Figure 5-1. You might think this was
accomplished by moving the square to a different place on the grid, as shown
conceptually in Figure 5-2, but you would be wrong.

Figure 5-2. How moving appears to work (but really doesn't)

What is really going on behind the scenes is an entirely different story. Rather than
moving the square, the translate specification picks up the entire grid and moves it to a
new location on the canvas. As far as the square is concerned, it's still being drawn with
its upper left corner at (0, 0), as depicted in Figure 5-3.

Figure 5-3. How moving with translate really works

A translation transformation never changes a graphic object's grid
coordinates; rather, it changes the position of the grid on the canvas.

At first glance, using translate seems as ridiculous and inefficient as moving your
couch further away from the outside wall of the house by moving the entire living room,
walls and all, to a new position. Indeed, if translation were the only transformation

 62

available, moving the entire coordinate system would be wasteful. However, we will
soon see other transformations, and combinations of a sequence of transformations,
which are more mathematically and conceptually convenient if they apply to the entire
coordinate system.

5.2 The scale Transformation

It is possible to make an object appear larger or smaller than the size at which it was
defined by scaling the coordinate system. Such a transformation is specified either as:

transform="scale(value)"

Multiplies all x- and y-coordinates by the given value.

transform="scale(x-value, y-value)"

Multiplies all x-coordinates by the given x-value and all y-coordinates by the
given y-value.

Example 5-3 is an example of the first kind of scaling transformation, which uniformly
doubles the scale of both axes. Once again, the dotted lines in Figure 5-4 aren't in the
SVG; they simply show the area of the canvas that we're interested in. Note that the
square's upper left corner is at (10, 10).

Example 5-3. Uniformly scaling a graphic

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <g id="square">
 <rect x="10" y="10" width="20" height="20"
 style="fill: none; stroke: black;"/>
 </g>
 <use xlink:href="#square" transform="scale(2)"/>
</svg>

Figure 5-4. Result of using scale transformation

You might be thinking, "Wait a minute — I can understand why the square got larger.
But I didn't ask for a translate, so why is the square in a different place?" Everything

 63

becomes clear when you look at Figure 5-5 to see what has actually occurred. The grid
hasn't moved; the (0, 0) point of the coordinate system is still in the same place, but each
user coordinate is now twice as large as it used to be. You can see from the grid lines that
the upper left corner of the rectangle is still at (10, 10) on the new, larger grid, since
objects never move. This also explains why the outline of the larger square is thicker. The
stroke-width is still one user unit, but that unit has now become twice as large, so the
stroke thickens.

Figure 5-5. How the scale transformation works

A scaling transformation never changes a graphic object's grid
coordinates or its stroke width; rather, it changes the size of the
coordinate system (grid) with respect to the canvas.

It is possible to specify a different scale factor for the x-axis and y-axis of the coordinate
system by using the second form of the scale transformation. Example 5-4 draws the
square with the x-axis scaled by a factor of three and the y-axis scaled by a factor of one
and a half. As you can see in Figure 5-6, the one-unit stroke width is also non-uniformly
scaled.

Example 5-4. Non-uniform scaling of a graphic

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <g id="square">
 <rect x="10" y="10" width="20" height="20"
 style="fill: none; stroke: black;"/>
 </g>
 <use xlink:href="#square" transform="scale(3, 1.5)"/>
</svg>

Figure 5-6. Result of using non-uniform scale transformation

 64

To this point, we have only applied the transform attribute to the <use> element. You
can apply a transformation to a series of elements by grouping them and transforming the
group:

<g id="group1" transform="translate(3, 5)">
 <line x1="10" y1="10" x1="30" y2="30"/>
 <circle cx="20" cy="20" r="10"/>
</g>

You may also apply a transformation to a single object or basic shape. For example, here
is a rectangle whose coordinate system is scaled by a factor of three:

<rect x="15" y="20" width="10" height="5"
 transform="scale(3)"
 style="fill: none; stroke: black;"/>

It's fairly clear that the width and height of the scaled rectangle should be three times as
large as the unscaled rectangle. However, you may wonder if the x- and y-coordinates are
evaluated before or after the rectangle is scaled. The answer is that SVG applies
transformations to the coordinate system before it evaluates any of the shape's
coordinates. Example 5-5 is the SVG for the scaled rectangle, shown in Figure 5-7 with
grid lines that are drawn in the unscaled coordinate system.

Example 5-5. Transforming a single graphic

<!-- grid guide lines in non-scaled coordinate system -->
<line x1="0" y1="0" x2="100" y2="0" style="stroke: black;"/>
<line x1="0" y1="0" x2="0" y2="100" style="stroke: black;"/>
<line x1="45" y1="0" x2="45" y2="100" style="stroke: gray;"/>
<line x1="0" y1="60" x2="100" y2="60" style="stroke: gray;"/>

<!-- rectangle to be transformed -->
<rect x="15" y="20" width="10" height="5"
 transform="scale(3)"
 style="fill: none; stroke: black;"/>

Figure 5-7. Result of transforming a single graphic

The effect of applying a transformation to a shape is the same as if
the shape were enclosed in a transformed group. In the preceding
example, the scaled rectangle is equivalent to this SVG:

<g transform="scale(3)">

 65

 <rect x="15" y="20" width="10" height="5"
 style="fill: none; stroke: black;"/>

</g>

5.3 Sequences of Transformations

It is possible to do more than one transformation on a graphic object. You just put the
transformations, separated by whitespace, in the value of the transform attribute. Here is
a rectangle that undergoes two transformations, a translation followed by a scaling. (The
axes are drawn to show that the rectangle has, indeed, moved.)

<!-- draw axes -->
<line x1="0" y1="0" x2="0" y2="100" style="stroke: gray;"/>
<line x1="0" y1="0" x2="100" y2="0" style="stroke: gray;"/>

<rect x="10" y="10" height="20" width="15"
 transform="translate(30, 20) scale(2)"
 style="fill: gray;"/>

This is the equivalent of the following sequence of nested groups, and both will produce
what you see in Figure 5-8.

<g transform="translate(30, 20)">
 <g transform="scale(2)">
 <rect x="10" y="10" height="20" width="15"
 style="fill: gray;"/>
 </g>
</g>

Figure 5-8. Result of translate followed by scale

Figure 5-9 shows what is happening at each stage of the transformation.

Figure 5-9. How translate followed by scale works

 66

The order in which you do a sequence of transformations affects the
result. In general, transformation A followed by transformation B
will not give the same result as transformation B followed by
transformation A.

Example 5-6 draws the same rectangle as in the previous example, only in a light gray
color. Then it draws the rectangle again, but does the scale before the translate. As
you can see from the result in Figure 5-10, the rectangles end up in very different places
on the canvas.

Example 5-6. Sequence of transformations -- scale followed by translate

<!-- draw axes -->
<line x1="0" y1="0" x2="0" y2="100" style="stroke: gray;"/>
<line x1="0" y1="0" x2="100" y2="0" style="stroke: gray;"/>

<rect x="10" y="10" width="20" height="15"
 transform="translate(30, 20) scale(2)" style="fill: #ccc;"/>

<rect x="10" y="10" width="20" height="15"
 transform="scale(2) translate(30, 20)"
 style="fill: black;"/>

Figure 5-10. Result of scale followed by translate

The reason that the black rectangle ends up farther away from the origin is that the
scaling is applied first, so that the translate of 20 units in the x-direction and 10 units in
the y-direction is done with units that are now twice as large, as shown in Figure 5-11.

 67

Figure 5-11. How scale followed by translate works

5.4 Technique: Converting from Cartesian Coordinates

If you are transferring data from other systems to SVG, you may have to deal with vector
drawings that use Cartesian coordinates (the ones you learned about in high school
algebra) to represent data. In this system, the (0, 0) point is at the lower left of the canvas,
and y-coordinates increase as you move upwards. Figure 5-12 shows the coordinates of a
trapezoid drawn with Cartesian coordinates.

Figure 5-12. Trapezoid drawn with Cartesian coordinates

Since the y-axis is "upside-down" relative to the SVG default, the coordinates have to be
recalculated. Rather than do it by hand, you can use a sequence of transformations to
have SVG do all the work for you. First, translate the picture into SVG, with the
coordinates exactly as shown in Example 5-7. (We'll also include the axes as a guide.) To
nobody's surprise, the picture will come out upside-down. Note that the image in Figure
5-13 is not left-to-right reversed, since the x-axis points the same direction in both
Cartesian coordinates and the default SVG coordinate system.

Example 5-7. Direct use of Cartesian coordinates

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <!-- axes -->
 <line x1="0" y1="0" x2="100" y2="0" style="stroke: black;"/>
 <line x1="0" y1="0" x2="0" y2="100" style="stroke: black;"/>

 <!-- trapezoid -->

 68

 <polygon points="40 40, 100 40, 70 70, 40 70"
 style="fill: gray; stroke: black;"/>
</svg>

Figure 5-13. Result of using original Cartesian coordinates

To finish the conversion, follow these steps:

1. Find the maximum y-coordinate in the original drawing. In this case, it turns out
to be 100, the endpoint of the y-axis in the original.

2. Enclose the entire drawing in a <g> element.
3. Enter a translate that moves the coordinate system downwards by the maximum y

value.
4. transform="translate(0, max-y)"
5. The next transform will be to scale the y-axis by a factor of -1, flipping it

upside-down.
6. transform="translate(0, max-y) scale(1, -1) "

Example 5-8 incorporates this transformation, producing a right-side-up trapezoid in
Figure 5-14.

Example 5-8. Transformed Cartesian coordinates

<svg width="200px" height="200px" viewBox="0 0 200 200">
 <g transform="translate(0,100) scale(1,-1)">
 <!-- axes -->
 <line x1="0" y1="0" x2="100" y2="0" style="stroke: black;"/>
 <line x1="0" y1="0" x2="0" y2="100" style="stroke: black;"/>

 <!-- trapezoid -->
 <polygon points="40 40, 100 40, 70 70, 40 70"
 style="fill: gray; stroke: black;"/>
 </g>
</svg>

Figure 5-14. Transformed Cartesian coordinates

 69

5.5 The rotate Transformation

It is also possible to rotate the coordinate system by a specified angle. In the default
coordinate system, angle measure increases as you rotate clockwise, with a horizontal
line having an angle of zero degrees, as shown in Figure 5-15.

Figure 5-15. Default measurement of angles

Unless you specify otherwise, the center of rotation (a fancy term for the "pivot point") is
presumed to be (0, 0). Example 5-9 shows a square drawn in gray, then drawn again in
black after the coordinate system is rotated 45 degrees. The axes are also shown as a
guide. Figure 5-16 shows the result. If you're surprised that the square has appeared to
move, you shouldn't be. Remember, the entire coordinate system has been rotated, as
shown in Figure 5-17. [1]

[1] All the figures in this chapter are static pictures. This one shows two squares; one
rotated and one unrotated. To show an animation of a rotating square, use
<animateTransform>, which we will discuss in Chapter 11, in Section 11.6.

Example 5-9. Rotation around the origin

<!-- axes -->
<polyline points="100 0, 0 0, 0 100" style="stroke: black; fill: none;"/>

<!-- normal and rotated square -->
<rect x="70" y="30" width="20" height="20" style="fill: gray;"/>
<rect x="70" y="30" width="20" height="20"
 transform="rotate(45)" style="fill: black;"/>

Figure 5-16. Result of rotation around the origin

 70

Figure 5-17. How rotation around the origin works

Most of the time, you will not want to rotate the entire coordinate system around the
origin; you'll want to rotate a single object around a point other than the origin. You can
do that via this series of transformations: translate(centerX, centerY)
rotate(angle) translate(-centerX, -centerY). SVG provides another version of
rotate to make this common task easier. In this second form of the rotate
transformation, you specify the angle and the center point around which you want to
rotate:

rotate(angle, centerX, centerY)

This has the effect of temporarily establishing a new system of coordinates with the
origin at the specified center x and y points, doing the rotation, and then re-establishing
the original coordinates. Example 5-10 shows this form of rotate to create multiple
copies of an arrow, shown in Figure 5-18.

Example 5-10. Rotation around a center point

<!-- center of rotation -->
<circle cx="50" cy="50" r="3" style="fill: black;" />

<!-- non-rotated arrow -->
<g id="arrow" style="stroke: black;">
 <line x1="60" y1="50" x2="90" y2="50" />
 <polygon points="90 50, 85 45, 85 55" />
</g>

<!-- rotated around center point -->
<use xlink:href="#arrow" transform="rotate(60, 50, 50)" />
<use xlink:href="#arrow" transform="rotate(-90, 50, 50)" />
<use xlink:href="#arrow" transform="rotate(-150, 50 50)" />

 71

Figure 5-18. Result of rotation around a center point

5.6 Technique: Scaling Around a Center Point

While it's possible to rotate around a point other than the origin, there is no corresponding
capability to scale around a point. You can, however, make concentric symbols with a
simple series of transformations. To scale an object by a given factor around a center
point, do this:

translate(-centerX*(factor-1), -centerY*(factor-1))
scale(factor)

You may also want to divide the stroke-width by the scaling factor so the outline stays
the same width while the object becomes larger. Example 5-11 draws the set of
concentric rectangles shown in Figure 5-19. [2]

[2] This is also a static picture, a "square bullseye." If you want to show an animation of
an expanding square, you'll use <animateTransform>, which we will discuss in Chapter
11, in Section 11.6.

Example 5-11. Scaling around a center point

<!-- center of scaling -->
<circle cx="50" cy="50" r="2" style="fill: black;" />

<!-- non-scaled rectangle -->
<g id="box" style="stroke: black; fill: none;">
 <rect x="35" y="40" width="30" height="20" />
</g>

<use xlink:href="#box" transform="translate(-50,-50) scale(2)"
 style="stroke-width: 0.5;" />
<use xlink:href="#box" transform="translate(-75,-75) scale(2.5)"
 style="stroke-width: 0.4;" />
<use xlink:href="#box" transform="translate(-100,-100) scale(3)"
 style="stroke-width: 0.33;" />

Figure 5-19. Result of scaling around a center point

 72

5.7 The skewX and skewY Transformations

SVG also has two other transformations: skewX and skewY, which let you skew one of the
axes. The general form is skewX(angle) and skewY(angle) The skewX transformation
"pushes" all x-coordinates by the specified angle, leaving y-coordinates unchanged.
skewY skews the y-coordinates, leaving x-coordinates unchanged, as shown in Example
5-12.

Example 5-12. skewX and skewY

[1]

<g style="stroke: gray; stroke-dasharray: 4 4;">
 <line x1="0" y1="0" x2="200" y2="0"/>
 <line x1="20" y1="0" x2="20" y2="90"/>
 <line x1="120" y1="0" x2="120" y2="90"/>
</g>

<g transform="translate(20, 0)"> [2]
 <g transform="skewX(30)"> [3]
 <polyline points="50 0, 0 0, 0 50" [4]
 style="fill: none; stroke: black; stroke-width: 2;"/>
 <text x="0" y="60">skewX</text> [5]
 </g>
</g>

<g transform="translate(120, 0)"> [6]
 <g transform="skewY(30)">
 <polyline points="50 0, 0 0, 0 50"
 style="fill: none; stroke: black; stroke-width: 2;"/>
 <text x="0" y="60">skewY</text>
 </g>
</g>

[1] These dashed lines are drawn in the default coordinate system, before any
transformation has occurred.

[2] This will move the entire skewed "package" to the desired location.

[3] Skew the x-coordinates 30 degrees. This transformation doesn't change the origin,
which will still be at (0, 0) in the new coordinate system.

[4] To make things easier, we draw the object at the origin.

[5] Text will be covered in more detail in Chapter 8.

[6] These elements are organized exactly like the preceding ones, except the
y-coordinates are skewed.

 73

Notice that skewX leaves the horizontal lines in Figure 5-20 horizontal, and skewY leaves
the vertical lines untouched. Go figure.

Figure 5-20. Result of skewX and skewY transformations

5.8 Transformation Reference Summary

Table 5-1 gives a quick summary of the transformations available in SVG.

Table 5-1. SVG transformations
Transformation Description

translate(x, y) Moves the user coordinate system by the specified x and y amounts. Note: If
you don't specify a y value, zero is assumed.

scale(xFactor,
yFactor)

Multiplies all user coordinate systems by the specified xFactor and
yFactor. The factors may be fractional or negative.

scale(factor) Same as scale(factor, factor).

rotate(angle)
Rotates the user coordinate by the specified angle. The center of rotation is
the origin (0, 0). In the default coordinate system, angle measure increases as
you rotate clockwise, with a horizontal line having an angle of zero degrees.

rotate(angle,
centerX, centerY)

Rotates the user coordinate by the specified angle. centerX and centerY
specify the center of rotation.

skewX(angle) Skews all x-coordinates by the specified angle. Visually, this makes vertical
lines appear at an angle.

skewY(angle) Skews all y-coordinates by the specified angle. Visually, this makes
horizontal lines appear at an angle.

 74

Chapter 6. Paths

All of the basic shapes described in Chapter 3 are really shorthand forms for the more
general <path> element. You are well advised to use these shortcuts; they help make
your SVG more readable and more structured. The <path> element is more general; it
draws the outline of any arbitrary shape by specifying a series of connected lines, arcs,
and curves. This outline can be filled and drawn with a stroke, just as the basic shapes are.
Additionally, these paths (as well as the shorthand basic shapes) may be used to define
the outline of a clipping area or a transparency mask, as you will see in Chapter 9.

All of the data describing an outline is in the <path> element's d attribute (the d stands
for data). The path data consists of one-letter commands, such as M for moveto or L for
lineto, followed by the coordinate information for that particular command.

6.1 moveto, lineto, and closepath

Every path must begin with a moveto command. The command letter is a capital M
followed by an x- and y-coordinate, separated by commas or whitespace. This command
sets the current location of the "pen" that's drawing the outline.

This is followed by one or more lineto commands, denoted by a capital L, also followed
by x- and y-coordinates, and separated by commas or whitespace. Example 6-1 has three
paths. The first draws a single line, the second draws a right angle, and the third draws
two thirty-degree angles. When you "pick up" the pen with another moveto, you are
starting a new subpath. Notice that the use of commas and whitespace as separators is
different, but perfectly legal, in all three paths. The result is Figure 6-1.

Example 6-1. Using moveto and lineto

<g style="stroke: black; fill: none;">
 <!-- single line -->
 <path d="M 10 10 L 100 10" />

 <!-- a right angle -->
 <path d="M 10, 20 L 100, 20 L 100,50" />

 <!-- two thirty-degree angles -->
 <path d="M 40 60, L 10 60, L 40 42.68,
 M 60 60, L 90 60, L 60 42.68" />
</g>

Examining the last path more closely:

Value Action
M 40 60 Move pen to (40, 60)
L 10 60 Draw a line to (10, 60)
L 40 42.68 Draw a line to (40, 42.68)

 75

M 60 60 Start a new subpath; move pen to (60, 60) — no line is drawn
L 90 60 Draw a line to (90, 60)
L 60 42.68 Draw a line to (60, 42.68)

Figure 6-1. Result of using moveto and lineto

You may have noticed that the path data doesn't look very much like
the typical values for XML attributes. Because the entire path data is
contained in one attribute rather than an individual element for each
point or line segment, a path takes up less memory when read into a
Document Object Model structure by an XML parser. Additionally,
a path's compact notation allows a complex graphic to be transmitted
without requiring a great deal of bandwidth.

If you want to use a <path> to draw a rectangle, you can draw all four lines, or you can
draw the first three lines and then use the closepath command, denoted by a capital Z, to
draw a straight line back to the beginning point of the current subpath. Example 6-2 is the
SVG for Figure 6-2, which shows a rectangle drawn the hard way, a rectangle drawn with
closepath, and a path that draws two triangles by opening and closing two subpaths.

Example 6-2. Using closepath

<g style="stroke: black; fill: none;">
 <!-- rectangle; all four lines -->
 <path d="M 10 10, L 40 10, L 40 30, L 10 30, L 10 10" />

 <!-- rectangle with closepath -->
 <path d="M 60 10, L 90 10, L 90 30, L 60 30, Z" />

 <!-- two thirty-degree triangles -->
 <path d="M 40 60, L 10 60, L 40 42.68, Z
 M 60 60, L 90 60, L 60 42.68, Z" />
</g>

Examining the last path more closely:

Value Action
M 40 60 Move pen to (40, 50)
L 10 60 Draw a line to (10, 60)
L 40 42.68 Draw a line to (40, 42.68)
Z Close path by drawing a straight line to (40, 60), where this subpath began
M 60 60 Start a new subpath; move pen to (60, 60) — no line is drawn
L 90 60 Draw a line to (90, 60)

 76

L 60 42.68 Draw a line to (60, 42.68)
Z Close path by drawing a straight line to (60, 60), where this subpath began

Figure 6-2. Result of using closepath

6.2 Relative moveto and lineto

The preceding commands are all represented by uppercase letters, and the coordinates are
presumed to be absolute coordinates. If you use a lowercase command letter, the
coordinates are interpreted as being relative to the current pen position. Thus, the
following two paths are equivalent:

<path d="M 10 10 L 20 10 L 20 30 M 40 40 L 55 35"
 style="stroke: black;" />
<path d="M 10 10 l 10 0 l 0 20 m 20 10 l 15 -5"
 style="stroke: black;" />

If you start a path with a lowercase m (moveto), its coordinates will be interpreted as an
absolute position since there's no previous pen position from which to calculate a relative
position. All the other commands in this chapter also have the same upper- and lowercase
distinction. An uppercase command's coordinates are absolute and a lowercase
command's coordinates are relative. The closepath command, which has no coordinates,
has the same effect in both upper- and lowercase.

6.3 Path Shortcuts

If content is king and design is queen, then bandwidth efficiency is the royal courtier who
keeps the palace running smoothly. Since any non-trivial drawing will have paths with
many tens of coordinate pairs, the <path> element has shortcuts that allow you to
represent a path in as few bytes as possible.

6.3.1 The Horizontal lineto and Vertical lineto Commands

Since horizontal and vertical lines are so common, a path may specify a horizontal line
with an H command followed by an absolute x-coordinate or an h command followed by a
relative x-coordinate. Similarly, a vertical line is specified with a V command followed by
an absolute y-coordinate or a v command followed by a relative y-coordinate.

Shortcut Equivalent to Effect
H 20 L 20 current_y Draws a line to absolute location (20, current_y)
h 20 l 20 0 Draws a line to (current_x+20, current_y)

 77

V 20 L current_x 20 Draws a line to absolute location (current_x, 20)
v 20 l current_x 20 Draws a line to location (current_x, current_y+20)

Thus, the following path draws a rectangle 15 units in width and 25 units in height, with
the upper left corner at coordinates (12, 24).

<path d="M 12 24 h 15 v 25 h -15 z"/>

6.3.2 Notational Shortcuts for a Path

Paths can also be made shorter by applying the following two rules:

1. You may place multiple sets of coordinates after an L or l, just as you do in the
<polyline> element. The following six paths all draw the same diamond that is
shown in Figure 6-3; the first three are in absolute coordinates and the last three in
relative coordinates. The third and sixth paths have an interesting twist — if you
place multiple pairs of coordinates after a moveto, all the pairs after the first are
presumed to be preceded by a lineto.[1]

[1] You can also put multiple single coordinates after an horizontal lineto or
vertical lineto, although it's rather pointless to do so. H 25 35 45 is the same as H
45, and v 11 13 15 is the same as v 39.

<path d="M 30 30 L 55 5 L 80 30 L 55 55 Z" />
<path d="M 30 30 L 55 5 80 30 55 55 Z" />
<path d="M 30 30 55 5 80 30 55 55 Z" />
<path d="m 30 30 l 25 -25 l 25 25 l -25 25 z" />
<path d="m 30 30 l 25 -25 25 25 -25 25 z" />
<path d="m 30 30 25 -25 25 25 -25 25 z" />

Figure 6-3. Result of drawing a diamond with a path

2. Any whitespace that is not necessary may be eliminated. You don't need a blank
after a command letter since all commands are one letter only. You don't need a
blank between a number and a command since the command letter can't be part of
the number. You don't need a blank between a positive and a negative number
since the leading minus sign of the negative number can't be a part of the positive
number. This lets you reduce the third and sixth paths in the preceding listing
even further:

<path d="M30 30 55 5 80 30 55 55Z" />
<path d="m30 30 25-25 25 25-25 25z" />

 78

Another example of the whitespace elimination rule in action is shown by the
example that drew a rectangle 15 units in width and 25 units in height, with the
upper left corner at coordinates (12, 24):

<path d="M 12 24 h 15 v 25 h -15 z" /> <!-- original -->
<path d="M12 24h15v25h-15z" /> <!-- shorter -->

6.4 Elliptical Arc

Lines are simple; two points on a path uniquely determine the line segment between them.
Since an infinite number of curves can be drawn between two points, you must give
additional information to draw a curved path between them. The simplest of the curves
we will examine is the elliptical arc — that is, drawing a section of an ellipse that
connects two points.

Although arcs are visually the simplest curves, specifying a unique arc requires the most
information. The first pieces of information you need to specify are the x- and y-radii of
the ellipse on which the points lie. This narrows it down to two possible ellipses, as you
can see in section (a) of Figure 6-4. The two points divide the two ellipses into four arcs.
Two of them, (b) and (c), are arcs that measure less than 180 degrees. The other two, (d)
and (e) are greater than 180 degrees. If you look at (b) and (c), you will notice that they
are differentiated by their direction; (b) is drawn in the direction of increasing negative
angle, and (c) in the direction of increasing positive angle. The same relationship holds
true between (d) and (e).

But wait — we still haven't uniquely specified the potential arcs! There's no law that says
that the ellipse has to have its x-radius parallel to the x-axis. Part (f) of Figure 6-4 shows
the two points with their candidate ellipses rotated thirty degrees with respect to the
x-axis.

Figure 6-4. Variations of the elliptical arc command

 79

(Figure 6-4 is adapted from the one found in section 8.3.8 of the World Wide Web
Consortium's SVG specification.)

Thus, an arc command begins with the A abbreviation for absolute coordinates or a for
relative coordinates, and is followed by seven parameters:

• The x- and y-radius of the ellipse on which the points lie.
• The x-axis-rotation of the ellipse.
• The large-arc-flag, which is zero if the arc's measure is less than 180 degrees,

or one if the arc's measure is greater than or equal to 180 degrees.
• The sweep-flag, which is zero if the arc is to be drawn in the negative angle

direction, or one if the arc is to be drawn in the positive angle direction.
• The ending x- and y- coordinates of the ending point. (The starting point is

determined by the last point drawn or the last moveto command.)

Here are the paths used to draw the elliptical arcs in sections (b) through (e) of Figure
6-4:

<path d="M 125,75 A100,50 0 0,0 225,125" /> <!-- b -->
<path d="M 125,75 A100,50 0 0,1 225,125" /> <!-- c -->
<path d="M 125,75 A100,50 0 1,0 225,125" /> <!-- d -->
<path d="M 125,75 A100,50 0 1,1 225,125" /> <!-- e -->

As a further example, let's enhance the background that we started in Example 4-8 to
complete the yin/yang symbol that is part of the Korean flag. Example 6-3 keeps the full

 80

ellipses as <ellipse> elements, but creates the semicircles that it needs with paths. The
result is shown in Figure 6-5.

Example 6-3. Using elliptical arc

Convert an elliptical arc parameterized for SVG to an
elliptical arc based around a central point.

<!-- gray drop shadow -->
<ellipse cx="154" cy="154" rx="150" ry="120" style="fill: #999999;" />

<!-- light blue ellipse -->
<ellipse cx="152" cy="152" rx="150" ry="120" style="fill: #cceeff;" />

<!-- large light red semicircle fills upper half,
 followed by small light red semicircle that dips into
 lower left half of symbol -->
<path d="M 302 152 A 150 120, 0, 1, 0, 2 152
 A 75 60, 0, 1, 0, 152 152" style="fill: #ffcccc;" />

<!-- light blue semicircle rises into upper right half of symbol -->
<path d="M 152 152 A 75 60, 0, 1, 1, 302 152" style="fill: #cceeff;" />

Figure 6-5. Result of using elliptical arc

6.5 Technique: Converting from Other Arc Formats

Some other vector graphics systems let you specify an arc by defining a center point for
the ellipse, its x- and y-radius, the starting angle, and the extent of the angle's arc. This is
a straightforward method of specification, and is excellent for drawing arcs as single
objects. This, paradoxically, is exactly why SVG instead chooses such a seemingly
eccentric method to specify arcs. In SVG, an arc is not presumed to be living in lonely
splendor; it is intended to be part of a connected path of lines and curves. (For example, a

 81

rounded rectangle is precisely that — a series of lines and elliptical arcs.) Thus, it makes
sense to specify an arc by its endpoints.

Sometimes, though, you do want an isolated semicircle (or, more accurately,
semi-ellipse). Presume that you have an ellipse specified as:

<ellipse cx="cx" cy="cy" rx="rx" ry="ry"/>

Here are the paths to draw the four possible semi-ellipses:

<!-- northern hemisphere -->
<path d="M cx-rx cy A rx ry 0 1 1 cx+rx cy"/>
<!-- southern hemipshere -->
<path d="M cx-rx cy A rx ry 0 1 0 cx+rx cy"/>
<!-- eastern hemisphere -->
<path d="M cx cy-ry A rx ry 0 1 1 cx cy+ry"/>
<!-- western hemisphere -->
<path d="M cx cy-ry A rx ry 0 1 0 cx cy+ry"/>

For the more general case, when you wish to draw an arbitrary arc that has been specified
in "center-and-angles" notation and wish to convert it to SVG's "endpoint-and-sweep"
format, use the following Perl script. It prompts you for center coordinates, radii, starting
angle, and angle extent. The output is a <path> tag that you can insert into your SVG
files.

#!/usr/bin/perl

Convert an elliptical arc based around a central point
to an elliptical arc parameterized for SVG.

Input is a list containing:
center x coordinate
center y coordinate
x-radius of ellipse
y-radius of ellipse
beginning angle of arc in degrees
arc extent in degrees
x-axis rotation angle in degrees

Output is a list containing:

x-coordinate of beginning of arc
y-coordinate of beginning of arc
x-radius of ellipse
y-radius of ellipse
large-arc-flag as defined in SVG specification

 82

sweep-flag as defined in SVG specification
x-coordinate of endpoint of arc
y-coordinate of endpoint of arc

sub convert_to_svg
{
 my ($cx, $cy, $rx, $ry, $theta1, $delta, $phi) = @_;
 my ($theta2, $pi);
 my ($x0, $y0, $x1, $y1, $large_arc, $sweep);

 #
 # Convert angles to radians
 #
 $pi = atan2(1,1) * 4; # approximation of pi

 $theta2 = $delta + $theta1;
 $theta1 = $theta1 * $pi / 180.0;
 $theta2 = $theta2 * $pi / 180.0;
 $phi_r = $phi * $pi / 180.0;

 #
 # Figure out the coordinates of the beginning and
 # ending points
 #
 $x0 = $cx + cos($phi_r) * $rx * cos($theta1) +
 sin(-$phi_r) * $ry * sin($theta1);
 $y0 = $cy + sin($phi_r) * $rx * cos($theta1) +
 cos($phi_r) * $ry * sin($theta1);

 $x1 = $cx + cos($phi_r) * $rx * cos($theta2) +
 sin(-$phi_r) * $ry * sin($theta2);
 $y1 = $cy + sin($phi_r) * $rx * cos($theta2) +
 cos($phi_r) * $ry * sin($theta2);

 $large_arc = ($delta > 180) ? 1 : 0;
 $sweep = ($delta > 0) ? 1 : 0;

 return ($x0, $y0, $rx, $ry, $phi, $large_arc, $sweep, $x1,
$y1);
}

Request input

print "Enter center x,y coordinates > ";
$data = <>;
$data =~ s/,/ /g;

 83

($cx, $cy) = split /\s+/, $data;

print "Enter x and y radii > ";
$data = <>;
$data =~ s/,/ /g;
($rx, $ry) = split/\s+/, $data;

print "Enter starting angle in degrees > ";
$theta = <>;
chomp $theta;

print "Enter angle extent in degrees > ";
$delta = <>;
chomp $delta;

print "Enter angle of rotation in degrees > ";
$phi = <>;
chomp $phi;

Echo original data

print "(cx,cy)=($cx,$cy) rx=$rx ry=$ry ",
 "start angle=$theta extent=$delta rotate=$phi\n";

($x0, $y0, $rx, $ry, $phi, $large_arc_flag, $sweep_flag, $x1,
$y1) =
 convert_to_svg($cx, $cy, $rx, $ry, $theta, $delta, $phi);

Produce a <path> element that fits the
specifications

print "<path d=\"M $x0 $y0 ", # Moveto initial point
 "A $rx $ry ", # Arc command and radii,
 "$phi ", # angle of rotation,
 "$large_arc_flag ", # the "large-arc" flag,
 "$sweep_flag ", # the "sweep" flag,
 "$x1 $y1\"/>\n"; # and the endpoint

If you wish to convert from the SVG format to a "center-and-angles" format, the
mathematics is considerably more complex. You can see the formulas in detail in the
SVG specification. This Perl script was adapted from the code in the Apache XML Batik
project.

#!/usr/bin/perl

 84

sub acos
{
 atan2(sqrt(1 - $_[0] * $_[0]), $_[0]);
}

Convert an elliptical arc based around a central point
to an elliptical arc parameterized for SVG.

Input is a list containing:

x-coordinate of beginning of arc
y-coordinate of beginning of arc
x-radius of ellipse
y-radius of ellipse
large-arc-flag as defined in SVG specification
sweep-flag as defined in SVG specification
x-coordinate of endpoint of arc
y-coordinate of endpoint of arc

Output is a list containing:
center x coordinate
center y coordinate
x-radius of ellipse
y-radius of ellipse
beginning angle of arc in degrees
arc extent in degrees
x-axis rotation angle in degrees

sub convert_from_svg
{
 my ($x0, $y0, $rx, $ry, $phi, $large_arc, $sweep, $x, $y)
= @_;
 my ($cx, $cy, $theta, $delta, $phi);

 # a plethora of temporary variables
 my (
 $dx2, $dy2, $phi_r, $x1, $y1,
 $rx_sq, $ry_sq,
 $x1_sq, $y1_sq,
 $sign, $sq, $coef,
 $cx1, $cy1, $sx2, $sy2,
 $p, $n,
 $ux, $uy, $vx, $vy
);

 85

 # Compute 1/2 distance between current and final point
 $dx2 = ($x0 - $x) / 2.0;
 $dy2 = ($y0 - $y) / 2.0;

 # Convert from degrees to radians
 $pi = atan2(1, 1) * 4.0;
 $phi %= 360;
 $phi_r = $phi * $pi / 180.0;

 # Compute (x1, y1)
 $x1 = cos($phi_r) * $dx2 + sin($phi_r) * $dy2;
 $y1 = -sin($phi_r) * $dx2 + cos($phi_r) * $dy2;

 # Make sure radii are large enough
 $rx = abs($rx); $ry = abs($ry);
 $rx_sq = $rx * $rx;
 $ry_sq = $ry * $ry;
 $x1_sq = $x1 * $x1;
 $y1_sq = $y1 * $y1;

 $radius_check = ($x1_sq / $rx_sq) + ($y1_sq / $ry_sq);
 if ($radius_check > 1)
 {
 $rx *= sqrt($radius_check);
 $ry *= sqrt($adius_check);
 $rx_sq = $rx * $rx;
 $ry_sq = $ry * $ry;
 }

 # Step 2: Compute (cx1, cy1)

 $sign = ($large_arc == $sweep) ? -1 : 1;
 $sq = (($rx_sq * $ry_sq) - ($rx_sq * $y1_sq) - ($ry_sq *
$x1_sq)) /
 (($rx_sq * $y1_sq) + ($ry_sq * $x1_sq));
 $sq = ($sq < 0) ? 0 : $sq;
 $coef = ($sign * sqrt($sq));
 $cx1 = $coef * (($rx * $y1) / $ry);
 $cy1 = $coef * -(($ry * $x1) / $rx);

 # Step 3: Compute (cx, cy) from (cx1, cy1)

 $sx2 = ($x0 + $x) / 2.0;
 $sy2 = ($y0 + $y) / 2.0;

 $cx = $sx2 + (cos($phi_r) * $cx1 - sin($phi_r) * $cy1);
 $cy = $sy2 + (sin($phi_r) * $cx1 + cos($phi_r) * $cy1);

 86

 # Step 4: Compute angle start and angle extent

 $ux = ($x1 - $cx1) / $rx;
 $uy = ($y1 - $cy1) / $ry;
 $vx = (-$x1 - $cx1) / $rx;
 $vy = (-$y1 - $cy1) / $ry;
 $n = sqrt(($ux * $ux) + ($uy * $uy));
 $p = $ux; # 1 * ux + 0 * uy
 $sign = ($uy < 0) ? -1 : 1;

 $theta = $sign * acos($p / $n);
 $theta = $theta * 180 / $pi;

 $n = sqrt(($ux * $ux + $uy * $uy) * ($vx * $vx + $vy * $vy));
 $p = $ux * $vx + $uy * $vy;
 $sign = (($ux * $vy - $uy * $vx) < 0) ? -1 : 1;
 $delta = $sign * acos($p / $n);
 $delta = $delta * 180 / $pi;

 if ($sweep == 0 && $delta > 0)
 {
 $delta -= 360;
 }
 elsif ($sweep == 1 && $delta < 0)
 {
 $delta += 360;
 }

 $delta %= 360;
 $theta %= 360;

 return ($cx, $cy, $rx, $ry, $theta, $delta, $phi);
}

Request input

print "Enter starting x,y coordinates > ";
$data = <>;
$data =~ s/,/ /g;
($x0, $y0) = split /\s+/, $data;

print "Enter ending x,y coordinates > ";
$data = <>;
$data =~ s/,/ /g;
($x, $y) = split /\s+/, $data;

 87

print "Enter x and y radii > ";
$data = <>;
$data =~ s/,/ /g;
($rx, $ry) = split/\s+/, $data;

print "Enter rotation angle in degrees ";
$phi = <>;
chomp $phi;

print "Large arc flag (0=no, 1=yes) > ";
$large_arc = <>;
chomp $large_arc;

print "Sweep flag (0=negative, 1=positive) > ";
$sweep = <>;
chomp $sweep;

print "From ($x0,$y0) to ($x,$y) rotate $phi",
 " large arc=$large_arc sweep=$sweep\n";

($cx, $cy, $rx, $ry, $theta, $delta, $phi) =
 convert_from_svg($x0, $y0, $rx, $ry, $phi, $large_arc,
$sweep,
 $x, $y);

print "Ellipse center = ($cx, $cy)\n";
print "Start angle = $theta\n";
print "Angle extent = $delta\n";

6.6 Bézier Curves

Arcs can be characterized as clean and functional, but one would rarely use the word
"graceful" to describe them. If you want graceful, you need to use curves which are
produced by graphing quadratic and cubic equations. Mathematicians have known about
these curves for literally hundreds of years, but drawing them was always a
computationally demanding task. This changed when Pierre Bézier, working for French
car manufacturer Rénault and Paul de Casteljau, an engineer for Citroën, independently
discovered a computationally convenient way to generate these curves.

If you have used graphics programs like Adobe Illustrator, you draw these Bézier curves
by specifying two points and then moving a "handle" as shown in the following diagram.
The end of this handle is called the control point, because it controls the shape of the
curve. As you move the handle, the curve changes in a way that, to the uninitiated, is
completely mystifying. Mike Woodburn, a graphic designer at Key Point Software,
suggests Figure 6-6 as a way to visualize how the control point and the curve interact:

 88

imagine that the line is made of flexible metal. Inside the control point is a magnet; the
closer a point is to the control point, the more strongly it is attracted.

Figure 6-6. How graphics programs draw Bézier curves

Another way to visualize the role of the control point is based on the de Casteljau method
of constructing the curves. We will use this approach in the following sections. For
further details on the underlying mathematics, presented in a remarkably lucid fashion,
see this web site:
http://graphics.cs.ucdavis.edu/GraphicsNotes/Bezier-Curves/Bezier-Curves.html.

6.6.1 Quadratic Bézier Curves

The simplest of the Bézier curves is the quadratic curve. You specify a beginning point,
an ending point, and a control point. Imagine two tent poles placed at the endpoints of the
line. These tent poles meet at the control point. Stretched between the centers of the tent
poles is a rubber band. The place where the curve bends is tied to the exact center of that
rubber band. This situation is shown in Figure 6-7.

Figure 6-7. Visualizing a quadratic Bézier curve

Programs like Adobe Illustrator show you only one of the "tent poles." The next time
you're using such a program, mentally add in the second pole and the resulting curves
will be far less mysterious.

That's the concept; now for the practical matter of actually producing such a curve in
SVG. You specify a quadratic curve in a <path> data with the Q or q command. The
command is followed by two sets of coordinates that specify a control point and an
endpoint. The uppercase command implies absolute coordinates; lowercase implies
relative coordinates. The curve in Figure 6-7 was drawn from (30, 75) to (300, 120) with
the control point at (240, 30), and was specified in SVG as follows:

<path d="M30 75 Q 240 30, 300 120" style="stroke: black; fill:
none;"/>

http://graphics.cs.ucdavis.edu/GraphicsNotes/Bezier-Curves/Bezier-Curves.html

 89

You may specify several sets of coordinates after a quadratic curve command. This will
generate a polybézier curve. Presume you want a <path> that draws a curve from (30,
100) to (100, 100) with a control point at (80, 30) and then continues with a curve to (200,
80) with a control point at (130, 65). Here is the SVG for this path, with control point
coordinates in bold. The result is shown in the left half of Figure 6-8; the control points
and lines are shown in the right half of the figure.

<path d="M30 100 Q 80 30, 100 100, 130 65, 200 80" />

Figure 6-8. Quadratic polybézier curve

You are probably wondering, "What happened to `graceful?' That curve is just lumpy."
This is an accurate assessment. Just because curves are connected doesn't mean that they
will look good together. That's why SVG provides the smooth quadratic curve command,
which is denoted by the letter T (or t if you want to use relative coordinates). The
command is followed by the next endpoint of the curve; the control point is calculated
automatically, as the specification says, by "reflection of the control point on the previous
command relative to the current point."

For the mathematically inclined, the new control point x2, y2 is
calculated from the curve's starting point x, y and the previous
control point x1, y1 with these formulas:

x2 = 2 * x - x1

y2 = 2 * y - y1

Here is a quadratic Bézier curve drawn from (30, 100) to (100, 100) with a control point
at (80, 30) and then smoothly continued to (200, 80). The left half of Figure 6-9 shows
the curve; the right half shows the control points. The reflected control point is shown
with a dashed line. Gracefulness has returned!

<path d="M30 100 Q 80 30, 100 100 T 200 80" />

Figure 6-9. Smooth quadratic polybézier curve

 90

6.6.2 Cubic Bézier Curves

A single quadratic Bézier curve has exactly one inflection point (the point where the
curve changes direction). While these curves are more versatile than simple arcs, we can
do even better by using cubic Bézier curves, which can have one or two inflection points.

The difference between the quadratic and cubic curves is that the cubic curve has two
control points, one for each endpoint. The technique for generating the cubic curve is
similar to that for generating the quadratic curve. You draw three lines that connect the
endpoints and control points (a), and connect their midpoints. That produces two lines (b).
You connect their midpoints, and that produces one line (c), whose midpoint determines
one of the points on the final curve.[2] See Figure 6-10.

[2] We're dispensing with the tent analogy; it gets too unwieldy. Curves based on
yurts and geodesic domes are left as exercises for the reader.

Figure 6-10. Visualizing a cubic Bézier curve

To specify such a cubic curve, use the C or c command. The command is followed by
three sets of coordinates that specify the control point for the start point, the control point
for the end point, and the end point. As with all the other path commands, an uppercase
command implies absolute coordinates; lowercase implies relative coordinates. The curve
in the preceding diagram was drawn from (20, 80) to (200, 120) with control points at (50,
20) and (150, 60). The SVG for the path was as follows:

<path d="M20 80 C 50 20, 150 60, 200 120"
 style="stroke: black; fill: none;"/>

 91

There are many interesting curves you can draw, depending upon the relationship of the
control points (see Figure 6-11). To make the graphic cleaner, we show only the lines
from each endpoint to its control point.

Figure 6-11. Result of cubic Bézier control point combinations

As with quadratic curves, you can construct a cubic polybézier by specifying several sets
of coordinates after a cubic curve command. The last point of the first curve becomes the
first point of the next curve, and so on. Here is a <path> that draws a cubic curve from
(30, 100) to (100, 100) with control points at (50, 50) and (70, 20); it is immediately
followed by a curve that doubles back to (65, 100) with control points at (110, 130) and
(45, 150). Here is the SVG for this path, with control point coordinates in bold. The result
is shown in the left half of Figure 6-12; the control points and lines are shown in the right
half of the diagram.

<path d="M30 100 C 50 50, 70 20, 100 100, 110, 130, 45, 150, 65, 100" />

Figure 6-12. Cubic polybézier curve

If you want to guarantee a smooth join between curves, you can use the S command (or s
if you want to use relative coordinates). In a manner analogous to that of the T command
for quadratic curves, the new curve will take the previous curve's endpoint as its starting
point, and the first control point will be the reflection of the previous ending control point.

 92

All you need to supply will be the control point for the next endpoint on the curve,
followed by the next endpoint itself.

Here is a cubic Bézier curve drawn from (30, 100) to (100, 100) with control points at (50,
30) and (70, 50). It continues smoothly to (200, 80), using (150, 40) as its ending control
point. The upper half shows the curve; the lower half shows the control points. The
reflected control point is shown with a dashed line in Figure 6-13.

<path d="M30 100 C 50 30, 70 50, 100 100 S 150 40, 200 80" />

Figure 6-13. Smooth cubic polybézier curve

6.7 Path Reference Summary

In Table 6-1, uppercase commands use absolute coordinates and lowercase commands
use relative coordinates.

Table 6-1. Path commands
Command Arguments Effect
M
m x y Move to given coordinates.

L
l x y Draw a line to the given coordinates. You may supply multiple

sets of coordinates to draw a polyline.
H
h x Draw a horizontal line to the given x-coordinate.

V
v y Draw a vertical line to the given x-coordinate.

A
a

rx ry
x-axis-rotation
large-arc sweep x y

Draw an elliptical arc from the current point to (x, y). The points
are on an ellipse with x-radius rx and y-radius ry. The ellipse is
rotated x-axis-rotation degrees. If the arc is less than 180
degrees, large-arc is zero; if greater than 180 degrees,
large-arc is one. If the arc is to be drawn in the positive
direction, sweep is one; otherwise it is zero.

Q
q x1 y1 x y Draw a quadratic Bézier curve from the current point to (x, y)

using control point (x1, y1).

T
t x y

Draw a quadratic Bézier curve from the current point to (x, y).
The control point will be the reflection of the previous Q
command's control point. If there is no previous curve, the current

 93

point will be used as the control point.

C
c x1 y1 x2 y2 x y

Draw a cubic Bézier curve from the current point to (x, y) using
control point (x1, y1) as the control point for the beginning of the
curve and (x2, y2) as the control point for the endpoint of the
curve.

S
s x2 y2 x y

Draw a cubic Bézier curve from the current point to (x, y), using
(x2, y2) as the control point for this new endpoint. The first
control point will be the reflection of the previous C command's
ending control point. If there is no previous curve, the current
point will be used as the first control point.

6.8 Paths and Filling

The information described in Chapter 3 in Section 3.5.1 is also applicable to paths, which
can not only have intersecting lines, but can also have "holes" in them. Consider the paths
in Example 6-4, both of which draw nested squares. In the first path, both squares are
drawn clockwise; in the second path, the outer square is drawn clockwise and the inner
square is drawn counterclockwise.

Example 6-4. Using different fill-rule values on paths

<!-- both paths clockwise -->
<path d="M 0 0, 60 0, 60 60, 0 60 Z
 M 15 15, 45 15, 45 45, 15 45Z"/>

<!-- outer path clockwise; inner path counterclockwise -->
<path d="M 0 0, 60 0, 60 60, 0 60 Z
 M 15 15, 15 45, 45 45, 45 15Z"/>

Figure 6-14 shows that there is a difference when you use a fill-rule of nonzero,
which takes into account the direction of the lines when determining whether a point is
inside or outside a path. Using a fill-rule of evenodd produces the same result for both
paths; it uses total number of lines crossed and ignores their direction.

Figure 6-14. Result of using different fill-rule values

 94

6.9 The marker element

Let us presume the following path, which uses a line, an elliptical arc, and another line to
draw the rounded corner in Figure 6-15:

<path d="M 10 20 100 20 A 20 30 0 0 1 120 50 L 120 110"
 style="fill: none; stroke: black;"/>

Figure 6-15. Lines and arc

We'd like to mark the direction of the path by putting a circle at the beginning, a solid
triangle at the end, and arrowheads at the other vertices, as shown in Figure 6-16. To
achieve this effect, we will construct three <marker> elements and tell the <path> to
reference them.

Figure 6-16. Lines and arc with markers

Let's start with Example 6-5, which adds the circular marker. A marker is a
"self-contained" graphic with its own private set of coordinates, so you have to specify its
markerWidth and markerHeight height in the starting <marker> tag. That is followed by
the SVG elements required to draw the marker, and ends with a closing </marker>. A
<marker> element does not display by itself, but we are putting it in a <defs> element
because that's where reusable elements belong.

Since we want the circle to be at the beginning of the path, we add a marker-start to
the style in the <path>.[3] The value of this property is a URL reference to the <marker>
element we've just created.

[3] Yes, markers are considered to be part of presentation rather than structure. This is one
of those gray areas where you could argue either case.

Example 6-5. First attempt at circular marker

<defs>
<marker id="mCircle" markerWidth="10" markerHeight="10">

 95

 <circle cx="5" cy="5" r="4" style="fill: none; stroke: black;"/>
</marker>
</defs>

<path d="M 10 20 100 20 A 20 30 0 0 1 120 50 L 120 110"
 style="marker-start: url(#mCircle);
 fill: none; stroke: black;"/>

The result in Figure 6-17 is not quite what we planned...

Figure 6-17. Misplaced circular marker

The reason the circle appears in the wrong place is that, by default, the start marker's (0, 0)
point is aligned with the beginning coordinate of the path. Example 6-6 adds refX and
refY attributes that tell which coordinates (in the marker's system) are to align with the
beginning coordinate. Once these are added, the circular marker appears exactly where it
is desired in Figure 6-18.

Example 6-6. Correctly placed circular marker

<marker id="mCircle" markerWidth="10" markerHeight="10" refX="5" refY="5">
 <circle cx="5" cy="5" r="4" style="fill: none; stroke: black;"/>
</marker>

Figure 6-18. Correctly placed circular marker

Given this information, we can now write Example 6-7, which adds the triangular marker
and references it as the marker-end for the path. Then we can add the arrowhead marker
and reference it as the marker-mid. The marker-mid will be attached to every vertex
except the beginning and end of the path. Notice that the refX and refY attributes have
been set so the wide end of the arrowhead aligns with the intermediate vertices while the
tip of the solid triangle aligns with the ending vertex. Figure 6-19 shows the result, which
draws the first marker correctly but not the others.

Example 6-7. Attempt to use three markers

<defs>

 96

 <marker id="mCircle" markerWidth="10" markerHeight="10"
 refX="5" refY="5">
 <circle cx="5" cy="5" r="4" style="fill: none; stroke: black;"/>
 </marker>

 <marker id="mArrow" markerWidth="6" markerHeight="10"
 refX="0" refY="4">
 <path d="M 0 0 4 4 0 8" style="fill: none; stroke: black;"/>
 </marker>

 <marker id="mTriangle" markerWidth="5" markerHeight="10"
 refX="5" refY="5">
 <path d="M 0 0 5 5 0 10 Z" style="fill: black;"/>
 </marker>
</defs>

<path d="M 10 20 100 20 A 20 30 0 0 1 120 50 L 120 110"
 style="marker-start: url(#mCircle);
 marker-mid: url(#mArrow);
 marker-end: url(#mTriangle);
 fill: none; stroke: black;"/>

Figure 6-19. Incorrectly oriented markers

To get the effect you want, you must explicitly set a marker's orient attribute to auto.
This makes it automatically rotate to match the direction of the path.[4] (You may also
specify a number of degrees, in which case the marker will always be rotated by that
amount.) Here in Example 6-8 are the markers, set to produce the effect shown in Figure
6-16. We don't need to orient the circle; it looks the same no matter how it's rotated.

[4] To be exact, the rotation is the average of the angle of the direction of the line going
into the vertex and the direction of the line going out of the vertex.

Example 6-8. Correctly oriented markers

<defs>
 <marker id="mCircle" markerWidth="10" markerHeight="10"
 refX="5" refY="5">
 <circle cx="5" cy="5" r="4" style="fill: none; stroke: black;"/>
 </marker>

 <marker id="mArrow" markerWidth="6" markerHeight="10"
 refX="0" refY="4" orient="auto">
 <path d="M 0 0 4 4 0 8" style="fill: none; stroke: black;"/>
 </marker>

 97

 <marker id="mTriangle" markerWidth="5" markerHeight="10"
 refX="5" refY="5" orient="auto">
 <path d="M 0 0 5 5 0 10 Z" style="fill: black;"/>
 </marker>
</defs>

<path d="M 10 20 100 20 A 20 30 0 0 1 120 50 L 120 110"
 style="marker-start: url(#mCircle);
 marker-mid: url(#mArrow);
 marker-end: url(#mTriangle);
 fill: none; stroke: black;"/>

Another useful attribute is the markerUnits attribute. If set to strokeWidth, the marker's
coordinate system is set so that one unit equals the stroke width. This makes your marker
grow in proportion to the stroke width; it's the default behavior and it's usually what you
want. If you set the attribute to userSpaceOnUse, the marker's coordinates are presumed
to be the same as the coordinate system of the object that references the marker. The
marker will remain the same size irrespective of the stroke width.

6.10 Marker Miscellanea

If you want the same marker at the beginning, middle, and end of a path, you don't need
to specify all of the marker-start, marker-mid, and marker-end properties. Just use
the marker property and have it reference the marker you want. Thus, if we wanted all
the vertices to have a circular marker, as shown in Figure 6-20, we'd write the SVG in
Example 6-9.

Example 6-9. Using a single marker for all vertices

<defs>
 <marker id="mCircle" markerWidth="10" markerHeight="10"
 refX="5" refY="5">
 <circle cx="5" cy="5" r="4" style="fill: none; stroke: black;"/>
 </marker>
</defs>

<path d="M 10 20 100 20 A 20 30 0 0 1 120 50 L 120 110"
 style="marker: url(#mCircle); fill: none; stroke: black;"/>

Figure 6-20. Using a single marker for all vertices

It is also possible to set the viewBox and preserveAspectRatio attributes on a
<marker> element to gain even more control over its display. These work exactly as
described in Chapter 2, in Section 2.3 and in Section 2.4.

 98

You may reference a <marker> in a <polygon>, <polyline>, or <line> element as well
as in a <path>.

The following thought may have occurred to you: "If a marker can have a path in it, can
that path have a marker attached to it as well?" The answer is yes, it can, but the second
marker must fit into the rectangle established by the first marker's markerWidth and
markerHeight. Please remember that just because a thing can be done does not mean
that it should be done. If you need such an effect, you are probably better off to draw the
secondary marker as a part of the primary marker rather than attempting to nest markers.

 99

Chapter 7. Patterns and Gradients

To this point, we have used only solid colors to fill and outline graphic objects. You are
not restricted to using solid colors; you may also use a pattern or a gradient to fill or
outline a graphic. That's what we'll examine in this chapter.

7.1 Patterns

To use a pattern, you define a graphic object that is replicated horizontally and vertically
to fill another object (or stroke). This graphic object is called a tile, because the act of
filling an object with a pattern is very much like covering an area of a floor with tiles. In
this section, we will use the quadratic curve drawn by the SVG in Example 7-1 as our tile.
It's outlined in gray to show its area (20 by 20 user units) clearly.

Example 7-1. Path for a pattern tile

<path d="M 0 0 Q 5 20 10 10 T 20 20"
 style="stroke: black; fill: none;"/>
<path d="M 0 0 h20 v20 h-20 z"
 style="stroke: gray; fill: none;"/>

Figure 7-1 is zoomed in so you can see it in detail.

Figure 7-1. Zoomed-in view of pattern tile

7.1.1 patternUnits

To create a pattern tile, you must enclose the <path> elements that describe your tile in a
<pattern> element, and then make several decisions. The first decision is how you wish
to space the tiles, and this is reflected in the patternUnits attribute. Do you want the
tiles spaced to fill a certain percentage of each object they're applied to, or you do want
them spaced at equal intervals, no matter what the size of the object they're filling?

If you want the tile dimensions on an object-by-object basis, you specify the pattern's
upper left x and y coordinates, and its width and height as percentages or decimals in
the range zero to one, and set the patternUnits attribute to objectBoundingBox. An
object's bounding box is the smallest rectangle that completely encloses a particular
graphic object. Example 7-2 shows the sample tile replicated five times horizontally and
five times vertically in any object that it fills.

Example 7-2. Tiles spaced with patternUnits set to objectBoundingBox

<defs>

 100

<pattern id="tile" x="0" y="0" width="20%" height="20%"
 patternUnits="objectBoundingBox">
<path d="M 0 0 Q 5 20 10 10 T 20 20"
 style="stroke: black; fill: none;"/>
<path d="M 0 0 h 20 v 20 h -20 z"
 style="stroke: gray; fill: none;"/>
</pattern>
</defs>

<rect x="20" y="20" width="100" height="100"
 style="fill: url(#tile); stroke: black;"/>
<rect x="135" y="20" width="70" height="80"
 style="fill: url(#tile); stroke: black;"/>
<rect x="220" y="20" width="150" height="130"
 style="fill: url(#tile); stroke: black;"/>

In Figure 7-2, the leftmost rectangle, which is 100 user units wide and tall, provides an
exact fit for five tiles that are each 20 user units wide and tall. In the middle rectangle, the
width and height aren't great enough to show any one pattern tile completely, so they are
truncated. In the rightmost rectangle, extra space is added since the rectangle's width and
height exceeds five times the space required for a single tile. In all cases, since we set x
and y, the upper left corner of the tile coincides with the upper left corner of the
rectangle.

Figure 7-2. Tiles spaced by objectBoundingBox

If you're used to most graphics programs, this behavior comes as somewhat of a shock.
Typical graphic editing programs put tiles directly next to one another to fill the area, no
matter what its size. There is never extra padding between tiles, and tiles are cut off only
by the edge of the object they're filling. If this is the behavior that you want, you must set
the patternUnits attribute to userSpaceOnUse, and specify the x and y coordinates, and
the width and height of the tile in user units. Example 7-3 uses the sample tile, set to its
exact width and height of twenty user units.

Example 7-3. Tiles spaced with patternUnits set to userSpaceOnUse

<defs>
<pattern id="tile" x="0" y="0" width="20" height="20"
 patternUnits="userSpaceOnUse">
<path d="M 0 0 Q 5 20 10 10 T 20 20"
 style="stroke: black; fill: none;"/>
<path d="M 0 0 h 20 v 20 h -20 z"

 101

 style="stroke: gray; fill: none;"/>
</pattern>
</defs>

<rect x="20" y="20" width="100" height="100"
 style="fill: url(#tile); stroke: black;"/>
<rect x="135" y="20" width="70" height="80"
 style="fill: url(#tile); stroke: black;"/>
<rect x="220" y="20" width="150" height="130"
 style="fill: url(#tile); stroke: black;"/>

In Figure 7-3, the tiles have constant size in all three rectangles. Their alignment is,
however, dependent upon the underlying coordinate system. The middle rectangle, for
example, has an x-coordinate that is not a multiple of twenty, so the rectangle's upper left
corner doesn't coincide with a tile's upper left corner. (The top edges do align, since the
upper y-coordinate of all three rectangles was carefully chosen to be a multiple of
twenty.)

Figure 7-3. Tiles spaced by userSpaceOnUse

If you do not specify a value for patternUnits, the default is
objectBoundingBox.

7.1.2 patternContentUnits

You must next decide what units are to be used to express the pattern data itself. By
default, the patternContentUnits attribute is set to userSpaceOnUse. If you set the
attributes to objectBoundingBox, the path data points are expressed in terms of the
object being filled. Example 7-4 shows the SVG that produces Figure 7-4.

If you use the objectBoundingBox for your patternContentUnits,
you should draw any objects to be filled with the upper left corner of
their bounding boxes at the origin (0, 0). Also, you will have to
reduce the stroke-width of the pattern data to 0.01, since these
units are percentages, not user units.

Example 7-4. patternContentUnits set to objectBoundingBox

<defs>

 102

<pattern id="tile"
 patternUnits="objectBoundingBox"
 patternContentUnits="objectBoundingBox"
 x="0" y="0" width=".2" height=".2">
 <path d="M 0 0 Q .05 .20 .10 .10 T .20 .20"
 style="stroke: black; fill: none; stroke-width: 0.01;"/>
 <path d="M 0 0 h 0.2 v 0.2 h-0.2z"
 style="stroke: black; fill: none; stroke-width: 0.01;"/>
</pattern>

</defs>

<g transform="translate(20,20)">
<rect x="0" y="0" width="100" height="100"
 style="fill: url(#tile); stroke: black;"/>
</g>

<g transform="translate(135,20)">
<rect x="0" y="0" width="70" height="80"
 style="fill: url(#tile); stroke: black;"/>
</g>

<g transform="translate(220,20)">
<rect x="0" y="0" width="150" height="130"
 style="fill: url(#tile); stroke: black;"/>
</g>

Figure 7-4. patternContentUnits set to objectBoundingBox

If you want to reduce an existing graphic object for use as a tile, it's easier to use the
viewBox attribute to scale it. Specifying viewBox will override any
patternContentUnits information. Another possible option is to use the
preserveAspectRatio attribute, as described in Chapter 2, in Section 2.4. Example 7-5
uses a scaled-down version of the cubic polybézier curve from Figure 6-12 as a tile. The
stroke-width is set to 5; otherwise, when scaled down, the pattern you see in Figure 7-5
would not be visible.

Example 7-5. Using viewBox to scale a pattern

<defs>
<pattern id="tile"
 patternUnits="userSpaceOnUse"
 x="0" y="0" width="20" height="20"
 viewBox="0 0 150 150">

 103

 <path d="M30 100 C 50 50, 70 20, 100 100, 110, 130, 45, 150, 65, 100"
 style="stroke: black; stroke-width: 5; fill: none;"/>
</pattern>
</defs>

<rect x="20" y="20" width="100" height="100"
 style="fill: url(#tile); stroke: black;"/>

Figure 7-5. Pattern scaled with viewBox

7.1.3 Nested Patterns

Again, this may have occurred to you: "If an object can be filled with a pattern, can that
pattern be filled with a pattern as well?" The answer is yes. As opposed to nested markers,
which are rarely necessary, there are some effects you can't easily achieve without nested
patterns. Example 7-6 creates a rectangle filled with circles, all filled with horizontal
stripes. This produces the unusual, but valid, polka-dot effect shown in Figure 7-6.

Example 7-6. Nested patterns

<defs>
<pattern id="stripe"
 patternUnits="userSpaceOnUse"
 x="0" y="0" width="6" height="6">
 <path d="M 0 0 6 0"
 style="stroke: black; fill: none;"/>
</pattern>

<pattern id="polkadot"
 patternUnits="userSpaceOnUse"
 x="0" y="0" width="36" height="36">
 <circle cx="12" cy="12" r="12"
 style="fill: url(#stripe); stroke: black;"/>
</pattern>
</defs>

<rect x="36" y="36" width="100" height="100"
 style="fill: url(#polkadot); stroke: black;"/>

Figure 7-6. Patterns within patterns

 104

7.2 Gradients

Rather than filling an object with a solid color, you can fill it with a gradient, a smooth
color transition from one shade to another. Gradients can be linear, where the color
transition occurs along a straight line, or radial, where the transition occurs along a
circular path.

7.2.1 linearGradient

A linear gradient is a transition through a series of colors along a straight line. You
specify the colors you want at specific locations, called gradient stops. The stops are part
of the structure of the gradient; the colors are part of the presentation. Example 7-7 shows
the SVG for a gradient that fills a rectangle with a smooth transition from gold to cyan,
which you can see in Figure 7-7.

Example 7-7. Simple two-color gradient

<defs>
<linearGradient id="two_hues">
 <stop offset="0%" style="stop-color: #ffcc00;"/>
 <stop offset="100%" style="stop-color: #0099cc;"/>
</linearGradient>
</defs>

<rect x="20" y="20" width="200" height="100"
 style="fill: url(#two_hues); stroke: black;"/>

Figure 7-7. Simple two-color gradient

7.2.1.1 The stop element

Let's examine the <stop> element more closely. It has two required attributes; the
offset tells the point along the line at which the color should be equal to the
stop-color. The offset is expressed as a percentage from 0 to 100% or as a decimal
value from 0 to 1.0. While you don't need to place stops at 0% and 100%, you usually

 105

will. Example 7-8 is a slightly more complex linear gradient, with stops for gold at 0%,
reddish-purple at 33.3%, and light green at 100%; it is shown in Figure 7-8.

Example 7-8. Three-color gradient

<defs>
<linearGradient id="three_stops">
 <stop offset="0%" style="stop-color: #ffcc00;"/>
 <stop offset="33.3%" style="stop-color: #cc6699"/>
 <stop offset="100%" style="stop-color: #66cc99;"/>
</linearGradient>
</defs>

<rect x="20" y="20" width="200" height="100"
 style="fill: url(#three_stops); stroke: black;"/>

Figure 7-8. Three-stop gradient

7.2.1.2 Establishing a transition line for a linear gradient

The default behavior of a linear gradient is to transition along a horizontal line from the
left side of an object to its right side. If you want the transition of colors to occur across a
vertical line or a line at an angle, you must specify the line's starting point with the x1 and
y1 attributes and its ending points with the x2 and y2 attributes. By default, these are also
expressed as percentages from 0% to 100% or decimals from 0 to 1. In Example 7-9,
we'll use the same color stops in a horizontal, vertical, and diagonal gradient. Rather than
duplicate the stops into each <linearGradient> element, we'll use the xlink:href
attribute to refer to the original left-to-right gradient. The stops will be inherited, but the
x- and y-coordinates will be overriden by each individual gradient. The arrows in Figure
7-9 do not appear in the SVG of Example 7-9.

Example 7-9. Defining vectors for a linear gradient

<defs>
<linearGradient id="three_stops">
 <stop offset="0%" style="stop-color: #ffcc00;"/>
 <stop offset="33.3%" style="stop-color: #cc6699"/>
 <stop offset="100%" style="stop-color: #66cc99;"/>
</linearGradient>

<linearGradient id="right_to_left"
 xlink:href="#three_stops"
 x1="100%" y1="0%" x2="0%" y2="0%"/>

 106

<linearGradient id="down"
 xlink:href="#three_stops"
 x1="0%" y1="0%" x2="0%" y2="100%"/>

<linearGradient id="up"
 xlink:href="#three_stops"
 x1="0%" y1="100%" x2="0%" y2="0%"/>

<linearGradient id="diagonal"
 xlink:href="#three_stops"
 x1="0%" y1="0%" x2="100%" y2="100%"/>
</defs>

<rect x="40" y="20" width="200" height="40"
 style="fill: url(#three_stops); stroke: black;"/>

<rect x="40" y="70" width="200" height="40"
 style="fill: url(#right_to_left); stroke: black;"/>

<rect x="250" y="20" width="40" height="200"
 style="fill: url(#down); stroke: black;"/>

<rect x="300" y="20" width="40" height="200"
 style="fill: url(#up); stroke: black;"/>

<rect x="40" y="120" width="200" height="100"
 style="fill: url(#diagonal); stroke: black;"/>

Figure 7-9. Defining vectors for a linear gradient

If you wish to establish the transition line using user space
coordinates instead of percentages, set the gradientUnits to
userSpaceOnUse instead of the default value, which is
objectBoundingBox.

7.2.1.3 The spreadMethod attribute

The transition line does not have to go from one corner of an object to another. What
happens if you say that the transition line goes from (20%, 30%) to (40%, 80%)? What

 107

happens to the part of the object outside that line? You can set the spreadMethod
attribute to one of these values:

pad

The beginning and ending stop colors will be extended to the edges of the object.

repeat

The gradient will be repeated start-to-end until it reaches the edges of the object
being filled.

reflect

The gradient will be reflected end-to-start, start-to-end until it reaches the edges
of the object being filled.

Figure 7-10 shows the leftmost square's gradient padded, the middle square's gradient
repeated, and the right square's gradient reflected. The original transition line has been
added to the SVG for each square in Example 7-10 to make the effect easier to detect.

Example 7-10. Effects of spreadMethod values on a linear gradient

<defs>
<linearGradient id="partial"
 x1="20%" y1="30%" x2="40%" y2="80%">
 <stop offset="0%" style="stop-color: #ffcc00;"/>
 <stop offset="33.3%" style="stop-color: #cc6699"/>
 <stop offset="100%" style="stop-color: #66cc99;"/>
</linearGradient>

<linearGradient id="padded"
 xlink:href="#partial"
 spreadMethod="pad"/>

<linearGradient id="repeated"
 xlink:href="#partial"
 spreadMethod="repeat"/>

<linearGradient id="reflected"
 xlink:href="#partial"
 spreadMethod="reflect"/>

<line id="show-line" x1="20" y1="30" x2="40" y2="80"
 style="stroke: white;"/>
</defs>

<rect x="20" y="20" width="100" height="100"
 style="fill: url(#padded); stroke: black;"/>
<use xlink:href="#show-line" transform="translate (20,20)"/>

<rect x="130" y="20" width="100" height="100"

 108

 style="fill: url(#repeated); stroke: black;"/>
<use xlink:href="#show-line" transform="translate (130,20)"/>

<rect x="240" y="20" width="100" height="100"
 style="fill: url(#reflected); stroke: black;"/>
<use xlink:href="#show-line" transform="translate (240,20)"/>

Figure 7-10. spreadMethod values pad, repeat, and reflect for a linear gradient

7.2.2 radialGradient

The other type of gradient you can use is the radial gradient, where the color transition
occurs along a circular path.[1] It's set up in much the same way as a linear gradient.
Example 7-11 sets three stops, which, as you see in Figure 7-11, are orange, green, and
purple.

[1] If the bounding box of the object being filled is not square, the transition path
will become elliptical to match the aspect ratio of the bounding box.

Example 7-11. Radial gradient with three stops

<defs>
<radialGradient id="three_stops">
 <stop offset="0%" style="stop-color: #f96;"/>
 <stop offset="50%" style="stop-color: #9c9;"/>
 <stop offset="100%" style="stop-color: #906;"/>
</radialGradient>
</defs>

<rect x="20" y="20" width="100" height="100"
 style="fill: url(#three_stops); stroke: black;"/>

Figure 7-11. Radial gradient with three stops

7.2.2.1 Establishing transition limits for a radial gradient

 109

Instead of using a line to determine where the 0% and 100% stop points should be, a
radial gradient's limits are determined by a circle; the center is the 0% stop point, and the
outer circumference defines the 100% stop point. You define the outer circle with the cx
(center x), cy (center y), and r (radius) attributes. All of these are in terms of percentages
of the object's bounding box. The default values for all these attributes is 50%. Example
7-12 draws a square with a radial gradient with the zero point centered at the upper left of
the square and the outer edge at the lower right. The result is shown in Figure 7-12.

Example 7-12. Setting limits for a radial gradient

<defs>
<radialGradient id="center_origin"
 cx="0" cy="0" r="100%">
 <stop offset="0%" style="stop-color: #f96;"/>
 <stop offset="50%" style="stop-color: #9c9;"/>
 <stop offset="100%" style="stop-color: #906;"/>
</radialGradient>
</defs>

<rect x="20" y="20" width="100" height="100"
 style="fill: url(#center_origin); stroke: black;"/>

Figure 7-12. Setting limits for a radial gradient

The 0% stop point, also called the focal point, is by default placed at the center of the
circle that defines the 100% stop point. If you wish to have the 0% stop point at some
point other than the center of the limit circle, you must change the fx and fy attributes.
The focal point should be within the circle established for the 100% stop point. If it's not,
the SVG viewer program will automatically move the focal point to the outer
circumference of the end circle.

In Example 7-13, the circle is centered at the origin with a radius of 100%, but the focal
point is at (30%, 30%). As you see in Figure 7-13, this has the visual effect of moving the
"center."

Example 7-13. Setting focal point for a radial gradient

<defs>
<radialGradient id="focal_set"
 cx="0" cy="0" fx="30%" fy="30%" r="100%">
 <stop offset="0%" style="stop-color: #f96;"/>
 <stop offset="50%" style="stop-color: #9c9;"/>
 <stop offset="100%" style="stop-color: #906;"/>

 110

</radialGradient>
</defs>

<rect x="20" y="20" width="100" height="100"
 style="fill: url(#focal_set); stroke: black;"/>

Figure 7-13. Setting focal point for a radial gradient

The default values for the limit-setting attributes of a <radialGradient> are as follows:

Attribute Default value
cx 50% (horizontal center of object bounding box)
cy 50% (vertical center of object bounding box)
r 50% (half the width/height of object bounding box)
fx same as cx
fy same as cy

If you wish to establish the circle limits using user space coordinates
instead of percentages, set the gradientUnits to userSpaceOnUse
instead of the default value, which is objectBoundingBox.

7.2.2.2 The spreadMethod attribute for radial gradients

In the event that the limits you've described don't reach to the edges of the object, you can
set the spreadMethod attribute to one of the values pad, repeat, or reflect as described
earlier in Section 7.2.1.3 to fill up the remaining space as you wish. We've written all
three effects in Example 7-14; Figure 7-14 shows the leftmost square's gradient padded,
the middle square's gradient repeated, and the right square's gradient reflected.

Example 7-14. Effects of spreadMethod values on a radial gradient

<defs>
<radialGradient id="three_stops"
 cx="0%" cy="0%" r="70%">
 <stop offset="0%" style="stop-color: #f96;"/>
 <stop offset="50%" style="stop-color: #9c9;"/>
 <stop offset="100%" style="stop-color: #906;"/>
</radialGradient>

<radialGradient id="padded" xlink:href="#three_stops"
 spreadMethod="pad"/>
<radialGradient id="repeated" xlink:href="#three_stops"

 111

 spreadMethod="repeat"/>
<radialGradient id="reflected" xlink:href="#three_stops"
 spreadMethod="reflect"/>
</defs>

<rect x="20" y="20" width="100" height="100"
 style="fill: url(#padded); stroke: black;"/>
<rect x="130" y="20" width="100" height="100"
 style="fill: url(#repeated); stroke: black;"/>
<rect x="240" y="20" width="100" height="100"
 style="fill: url(#reflected); stroke: black;"/>

Figure 7-14. spreadMethod values pad, repeat, and reflect for a radial gradient

7.2.3 Gradient Reference Summary

Linear and radial gradients describe a smooth transition of colors used to fill an object.
The object in question has a bounding box, defined as the smallest rectangle that entirely
contains the object. The <linearGradient> and <radialGradient> elements are both
containers for a series of <stop> elements. Each of these <stop> elements specifies a
stop-color and an offset. For linear gradients, the offset is a percentage of the distance
along the gradient's linear vector. For radial gradients, it is a percentage of the distance
along the gradient's radius.

For a linear gradient, the starting point of the vector (which has the 0% stop color) is
defined by the attributes x1 and y1; the ending point (which has the 100% stop color) by
the attributes x2 and y2.

For a radial gradient, the focal point (which has the 0% stop color) is defined by the
attributes fx and fy; the circle that has the 100% stop color is defined by its center
coordinates cx and cy and its radius r.

If the gradientUnits attribute has the value objectBoundingBox, the coordinates are
taken as a percentage of bounding box's dimensions (this is the default). If the value is set
to userSpaceOnuse, the coordinates are taken to be in the coordinate system used by the
object that is being filled.

If the vector for a linear gradient or the circle for a radial gradient does not reach to the
boundaries of the object being filled, the remaining space will be colored as determined
by the value of the spreadMethod attribute: pad, the default, extends the start and end
colors to the boundaries; repeat repeats the gradient start-to-end until it reaches the

 112

boundaries; and reflect replicates the gradient end-to-start and start-to-end until it
reaches the object boundaries.

7.3 Transforming Gradients and Patterns

Sometimes you may need to skew, stretch, or rotate a pattern or gradient. You're not
transforming the object being filled; you're transforming the pattern or the color spectrum
used to fill the object. The gradientTransform and patternTransform attributes let
you do just that, as written in Example 7-15 and shown in Figure 7-15:

Example 7-15. Transforming patterns and gradients

<defs>
<linearGradient id="plain">
 <stop offset="0%" style="stop-color: #ffcc00;"/>
 <stop offset="33.3%" style="stop-color: #cc6699"/>
 <stop offset="100%" style="stop-color: #66cc99;"/>
</linearGradient>

<linearGradient id="skewed-gradient"
 gradientTransform="skewX(10)"
 xlink:href="#plain"/>

<pattern id="tile" x="0" y="0" width="20%" height="20%"
 patternUnits="objectBoundingBox">
<path d="M 0 0 Q 5 20 10 10 T 20 20"
 style="stroke: black; fill: none;"/>
<path d="M 0 0 h 20 v 20 h -20 z"
 style="stroke: gray; fill: none;"/>
</pattern>

<pattern id="skewed-tile"
 patternTransform="skewY(15)"
 xlink:href="#tile"/>
</defs>

<rect x="20" y="10" width="100" height="100"
 style="fill: url(#tile); stroke: black;"/>
<rect x="135" y="10" width="100" height="100"
 style="fill: url(#skewed-tile); stroke: black;"/>

<rect x="20" y="120" width="200" height="50"
 style="fill: url(#plain); stroke: black;"/>
<rect x="20" y="190" width="200" height="50"
 style="fill: url(#skewed-gradient); stroke: black;"/>

Figure 7-15. Transformation of a pattern and gradient

 113

One final note about gradients and patterns — although we've only applied them to the
filled area of a shape, you may also apply them to the stroke. This lets you produce a
multicolored or patterned outline for an object. You'll usually set the stroke-width to a
number greater than one so that the effect is more clearly visible.

 114

Chapter 8. Text

While it may be true that every picture tells a story, it's perfectly all right to use words to
help tell the story. Thus, SVG has several elements that let you add text to your graphics.

8.1 Text Terminology

Before we investigate the primary method of adding text, the <text> element, we should
define some terms you'll see if you read the SVG specification or if you work with text in
any graphic environment:

Character

A character, as far as an XML document is concerned, is a byte or bytes with a
numeric value according to the Unicode standard. For example, what we call the
letter "g" is the character with Unicode value 103.

Glyph

A glyph is the visible representation of a character or characters. A single
character can have many different glyphs to represent it. Figure 8-1 shows the
word "glyphs" written with two different sets of glyphs — look particularly at the
initial "g" — it's the same character, but the glyphs are markedly different.

Figure 8-1. Two sets of glyphs

Multiple characters can reduce to a single glyph; some fonts have separate glyphs
for the letter combinations "fl" and "ff" to make their spacing look better (these
are called ligatures). Other times, a single character can be composed of multiple
glyphs; a print program might create the character é (which has Unicode value
233) by combining the "e" glyph with a non-spacing accent mark "´".

Font

A collection of glyphs representing a certain set of characters. All the glyphs in a
font will normally have the following characteristics in common:

Baseline, ascent, and descent

All the glyphs in a font line up on the baseline. The distance from the baseline to
the top of the character is the ascent; the distance from the baseline to the bottom
of the character is the descent. The total height of the character is also called the
em-height. The em-box is a square that has a width as large as an em-height.

 115

The upper dotted line in Figure 8-2 is used to determine the cap-height, which is
the height of a capital letter above the baseline. The lower dotted line is used to
determine the ex-height, which, logically enough, is the distance from the baseline
to the top of a lower case letter "x."

Figure 8-2. Glyph measurements

8.2 Simple Attributes and Properties of the text Element

The simplest form of the <text> element requires only two attributes, x and y, which
define the point where the baseline of the first character of the element's content is placed.
The default style for text, as with all objects, is to have a fill color of black and no outline.
This, as it turns out, is precisely what you want for text. If you set the outline as well as
the fill, the text looks uncomfortably thick. If you set only the outline, you can get a fairly
pleasant set of outlined glyphs, especially if you lower the stroke width. Example 8-1
uses the placement and stroke/fill characteristics for <text>; the result is Figure 8-3.

Example 8-1. Text placement and outlining

<!-- guide lines -->
<path d="M 20 10, 20 120 M 10 30 100 30 M 10 70 100 70
 M 10 110 100 110" style="stroke: gray;"/>

<text x="20" y="30">Simplest Text</text>
<text x="20" y="70" style="stroke: black;">Outlined/filled</text>
<text x="20" y="110" style="stroke: black; stroke-width: 0.5;
 fill: none;">Outlined only</text>

Figure 8-3. Text placement and outlining

Many of the other properties that apply to text are the same as they are in the Cascading
Style Sheets standard. The following is a list of the CSS properties and values that are
implemented in the Apache Batik viewer version 1.0:

font-family

 116

The value is a whitespace-separated list of font family names or generic family
names. The generic family names are serif, sans-serif, and monospace. Serif
fonts have little "hooks" at the ends of the strokes; sans-serif fonts don't. In Figure
8-1, the word at the left is in a serif font and the word on the right is in a sans-serif
font. Both serif and sans-serif fonts are proportional; the width of a capital M is
not the same as the width of a capital I. A monospace font, which may or may not
have serifs, is one where all the glyphs have the same width, like the letters of a
typewriter.

font-size

The value is the baseline-to-baseline distance of glyphs if you were to have more
than one line of text. (In SVG, you can't have multi-line <text> content, so the
concept is somewhat abstract.) If you use units on this attribute, as in
style="font-size: 18pt", the eighteen-point size will be converted to user
units before being rendered, so it can be affected by transformations.

font-weight

The two most commonly used values of this property are bold and normal. You
need the normal value in case you want to place non-bold text in a group that has
been set to style="font-weight: bold".

font-style

The two most commonly used values of this property are italic and normal.

text-decoration

Possible values of this property are none, underline, overline, and
line-through.

word-spacing

The value of this property is a length, either in explicit units such as pt or in user
units. Make this a positive number to increase the space between words, set it to
normal to keep normal space, or make it negative to tighten up the space between
words. The length you specify is added to the normal spacing.

letter-spacing

The value of this property is a length, either in explicit units such as pt or in user
units. Make this a positive number to increase the space between individual letters,
set it to normal to keep normal space, or make it negative to tighten up the space
between letters. The length you specify is added to the normal spacing.

 117

Example 8-2 uses these styles to produce Figure 8-4, with effects you'd expect from any
competent text application.

Example 8-2. Text weight, style, decoration, and spacing attributes

<g style="font-size: 18pt">
<text x="20" y="20" style="font-weight:bold;">bold</text>
<text x="120" y="20" style="font-style:italic;">italic</text>
<text x="20" y="60" style="text-decoration:underline;">under</text>
<text x="120" y="60" style="text-decoration:overline;">over</text>
<text x="200" y="60"
 style="text-decoration:line-through;">through</text>
<text x="20" y="90" style="word-spacing: 10pt;">more word space</text>
<text x="20" y="120" style="word-spacing: -3pt;">less word space</text>
<text x="20" y="150" style="letter-spacing: 5pt;">wide letter space</text>
<text x="20" y="180" style="letter-spacing: -2pt;">narrow letter
space</text>
</g>

Figure 8-4. Text weight, style, decoration, and spacing

8.3 Text Alignment

The <text> element lets you specify the starting point, but you don't know, a priori, its
ending point. This would make it difficult to center or right-align text, were it not for the
text-anchor property. You set it to a value of start, middle, or end. For fonts that are
drawn left-to-right, these are equivalent to left, center, and right alignment. For fonts that
are drawn in other directions (see Section 8.7) these have a different effect. Example 8-3
shows three text strings, all starting at an x-location of 100, but with differing values of
text-anchor. A guide line is drawn to show the effect more clearly in the result, Figure
8-5.

Example 8-3. Use of text-anchor

<g style="font-size: 14pt;">
<path d="M 100 10 100 100" style="stroke: gray; fill: none;"/>
<text x="100" y="30" style="text-anchor: start">Start</text>
<text x="100" y="60" style="text-anchor: middle">Middle</text>
<text x="100" y="90" style="text-anchor: end">End</text>

 118

</g>

Figure 8-5. Result of using text-anchor

8.4 The tspan element

Another consequence of not knowing a text string's length in advance is that it is difficult
to construct a string with varying text attributes, such as this sentence, which switches
among italic, normal, and bold text. If you had only the <text> element, you'd need to
experiment to find where each differently styled segment of text ended in order to space
them properly. To solve this problem, SVG provides the <tspan>, or text span element.
Analogous to the XHTML element, <tspan> is a tabula rasa that may be
embedded in text content, and upon which you may impose style changes. The <tspan>
remembers the text position, so you don't have to. Thus, Example 8-4, which produces
the display in Figure 8-6.

Example 8-4. Using tspan to change styles

<text x="10" y="30" style="font-size:12pt;">
 Switch among
 <tspan style="font-style:italic">italic</tspan>, normal,
 and <tspan style="font-weight:bold">bold</tspan> text.
</text>

Figure 8-6. Styles changed with tspan

In addition to changing presentation properties such as font size, color, weight, etc., you
can also use attributes with <tspan> to change the positioning of individual letters or sets
of letters. If, for example, you want superscripts or subscripts, you can use the dy
attribute to offset characters within a span. The value you assign to this attribute is added
to the vertical position of the characters, and continues to affect text even outside the span.
Negative values are allowed. A similar attribute, dx, offsets characters horizontally.
Example 8-5 uses vertical offsets to create the "falling letters" in Figure 8-7.

Example 8-5. Using dy to change vertical positioning within text

<text x="10" y="30" style="font-size:12pt;">
 F <tspan dy="4">a</tspan>
 <tspan dy="8">l</tspan>
 <tspan dy="12">l</tspan>
</text>

 119

Figure 8-7. Vertical positioning with dy

If you wish to express the offsets in absolute terms rather than relative terms, you use the
x and y attributes. This is handy for doing multi-line runs of text. In fact, you must do it
this way, since, as you will see in Section 8.9, SVG never displays newline characters in
text. (The lack of a newline will be remedied in SVG 1.1.) If your SVG viewer allows
text selection, putting multiple lines into a single <text> element, as we have done in
Example 8-6 will allow the selection to include all the lines. You should always use
<tspan>s within a <text> element to group related lines, not only to allow them to be
selected as a unit, but also because it adds structure to your document.

Example 8-6. Use of absolute positioning with tspan

<text x="10" y="30" style="font-size:12pt;">
 They dined on mince, and slices of quince,
 <tspan x="20" y="50">Which they ate with a
 runcible spoon;</tspan>
 <tspan x="10" y="70">And hand in hand, on the edge
 of the sand,</tspan>
 <tspan x="20" y="90">They danced by the light of the moon.</tspan>
</text>

There's no visual evidence in Figure 8-8 that all the text is in one <text> element, but
trust us — they're all connected.

Figure 8-8. Absolutely positioned poetry

You may also rotate a letter or series of letters within a <tspan> by using the rotate
attribute, whose value is an angle in degrees.

If you have to modify the positions of several characters, you can do it easily by
specifying a series of numbers for any of the x, y, dx, dy, and rotate attributes. The
numbers you specified will be applied, one after another, to the characters within the
<tspan>. This is shown in Example 8-7.

Example 8-7. Use of multiple values for dx and dy in a text span

<text x="30" y="30" style="font-size:14pt">
<tspan dx="0 4 -3 5 -4 6" dy="0 -3 7 3 -2 -8">Shaken</tspan>
</text>

 120

Although Figure 8-9 doesn't show it, the effects of dx and dy persist after the <tspan>
ends. If more text were placed after the closing </tspan>, it would be at the same offsets
as the letter n. It would not return to the baseline established by the first capital S.

Figure 8-9. Multiple horizontal and vertical offsets

If you have nested <tspan> elements, the x, y, dx, dy, and rotate
attribute values are not inherited by the inner elements.

Although you can use the dy attribute to produce superscripts and subscripts, it's easier to
use the baseline-shift style, as we have done in Example 8-8. This style property has
values of super and sub. You may also specify a length, such as 0.5em, or a percentage,
which is calculated in terms of the font size. baseline-shift's effects are restricted to
the span in which it occurs.

Example 8-8. Use of baseline-shift

<text x="20" y="25" style="font-size: 12pt;">
C<tspan style="baseline-shift: sub;">12</tspan>
H<tspan style="baseline-shift: sub;">22</tspan>
O<tspan style="baseline-shift: sub;">11</tspan> (sugar)
</text>

<text x="20" y="70" style="font-size: 12pt;">
6.02 x 10<tspan baseline-shift="super">23</tspan>
(Avogadro's number)
</text>

In Figure 8-10, the subscripted numbers appear too large. In an ideal case we'd set the
font-size as well, but we wanted this example to concentrate on only one concept.

Figure 8-10. Subscripts and superscripts

8.5 Setting textLength

Although we said that there's no a priori way to determine the endpoint of a segment of
text, you can explicitly specify the length of text as the value of the textLength attribute.
SVG will then fit the text into the given space. It does so by adjusting the space between
glyphs and leaving the glyphs themselves untouched, or it can fit the words by adjusting
both the spacing and glyph size. If you want to adjust space only, set the value of the
lengthAdjust to spacing (this is the default). If you want SVG to fit the words into a

 121

given length by adjusting both spacing and glyph size, set lengthAdjust to
spacingAndGlyphs. Example 8-9 uses these attributes to achieve the results of Figure
8-11.

Example 8-9. Use of textLength and lengthAdjust

<g style="font-size: 14pt;">
<path d="M 20 10 20 70 M 220 10 220 70" style="stroke: gray;"/>
<text x="20" y="30"
 textLength="200" lengthAdjust="spacing">Two words</text>
<text x="20" y="60"
 textLength="200" lengthAdjust="spacingAndGlyphs">Two words</text>

<text x="20" y="90">Two words
 <tspan style="font-size: 10pt;">(normal length)</tspan></text>

<path d="M 20 100 20 170 M 100 100 100 170" style="stroke: gray;"/>
<text x="20" y="120"
 textLength="80" lengthAdjust="spacing">Two words</text>
<text x="20" y="160"
 textLength="80" lengthAdjust="spacingAndGlyphs">Two words</text>
</g>

Figure 8-11. Effects of varying textLength and lengthAdjust

8.6 Vertical Text

When you use SVG to create charts, graphs, or tables, you will often want labels running
down the vertical axes. One way to achieve vertically-oriented text is to use a
transformation to rotate the text 90 degrees. Another way to achieve the same effect is
to change the value of the writing-mode style property to the value tb (meaning top to
bottom).

Sometimes, though, you want the letters to appear in a vertical column with no rotation.
Example 8-10 does this by setting the glyph-orientation-vertical property with a
value of zero. (Its default value is 90, which is what rotates top-to-bottom text 90 degrees.)
In Figure 8-12, this setting tends displays the inter-letter spacing as unnaturally large.
Setting a small negative value for letter-spacing solves this problem.

Example 8-10. Producing vertical text

 122

<text x="10" y="20" transform="rotate(90,10,20)">Rotated 90</text>
<text x="50" y="20" style="writing-mode: tb;">Writing Mode tb</text>
<text x="90" y="20" style="writing-mode: tb;
 glyph-orientation-vertical: 0;">Vertical zero</text>

Figure 8-12. Vertical text

8.7 Internationalization and Text

8.7.1 Unicode and Bidirectionality

XML is based on the Unicode standard (fully documented at the Unicode Consortium's
web site, http://www.unicode.org). This lets text display in any language that the
underlying viewer software can displaying, as you can see in Figure 8-13. Some
languages such as Arabic and Hebrew are written right to left, so when text in these
languages is mixed with text written left to right, as English is, the text is bidirectional, or
bidi for short. The system software knows which characters go in which direction and
works out their positions accordingly. Example 8-11 also overrides the implicit
directionality of a segment of text by setting its direction style property to rtl, which
stands for right-to-left. If you wish to change the direction of Hebrew or Arabic text, set
it to ltr, which is left-to-right. You must also explicity override the underlying Unicode
bidirectionality algorithm by setting the unicode-bidi style property to bidi-override.

Example 8-11. International text using Unicode

<g style="font-size: 14pt;">

<text x="10" y="30">Greek: </text>
<text x="100" y="30">
 αβγδε
</text>

<text x="10" y="50">Russian:</text>
<text x="100" y="50">
 абвгд
</text>

http://www.unicode.org/

 123

<text x="10" y="70">Hebrew:</text>
<text x="100" y="70">
 אבגדה (written right to left)
</text>

<text x="10" y="90">Arabic:</text>
<text x="100" y="90">
 ابةت (written right to left)
</text>

<text x="10" y="130">
 This is
 <tspan style="direction: rtl; unicode-bidi: bidi-override;
 font-weight: bold;">right-to-left</tspan>
 text.
</text>
</g>

Figure 8-13. Multilingual text

8.7.2 The switch Element

The ability to display multiple languages in a single document is useful for such things as
a brochure for an event that receives international visitors. Sometimes, though, you
would like to create one document with content in two languages, say, Spanish and
Russian. People viewing the document with Spanish system software would see the
Spanish text, and Russians would see Russian text.

SVG provides this capability with the <switch> element. This element searches through
all its children until it finds one whose systemLanguage attribute has a value that
matches the language the user has chosen in the viewer software's preferences. The value
of systemLanguage is a single value or comma-separated list of language names. A
language name is either a two-letter language code, such as ru for Russian, or a language
code followed by a country code, which specifies a sublanguage. For instance, fr-CA
denotes Canadian French, while fr-CH denotes Swiss French.

Once a matching child element is found, all its children will be displayed. All the other
children of the <switch> will be bypassed. Example 8-12 shows text in UK English, US
English, Spanish, and Russian. Since a match of language code alone is considered a
match, and country codes are used only to "break a tie," the text for UK English must
come first.

 124

Example 8-12. Use of the switch element

<circle cx="40" cy="60" r="20" style="fill: none; stroke: black;"/>
<g font-size="12pt">
<switch>
 <g systemLanguage="en-UK">
 <text x="10" y="30">A circle</text>
 <text x="10" y="100">without colour.</text>
 </g>
 <g systemLanguage="en">
 <text x="10" y="30">A circle</text>
 <text x="10" y="100">without color.</text>
 </g>
 <g systemLanguage="es">
 <text x="10" y="30">Un círculo</text>
 <text x="10" y="100">sin color.</text>
 </g>
 <g systemLanguage="ru">
 <text x="10" y="30">
 Круг
 </text>
 <text x="10" y="100">без
 света.</text>
 </g>
</switch>
</g>

Figure 8-14 is a combination of screenshots taken with the language set to each of the
choices in Example 8-12.

Figure 8-14. Combined screenshots as seen with different language preferences

8.7.3 Using a Custom Font

Sometimes you need special symbols that are not represented in Unicode, or you want a
subset of the Unicode characters without having to install an entire font. An example is
Figure 8-15, which needs only a few of the over 2,000 Korean syllables. You can create a
custom font as described in Appendix E and give its starting tag a unique id.

 125

Here is the relevant portion of a file that contains six of the Korean syllables exported
from the Batang TrueType font. The file is called kfont.svg:

<font id="kfont-defn" horiz-adv-x="989" vert-adv-y="1200"
 vert-origin-y="0">
 <font-face font-family="bakbatn"
 units-per-em="1000"
 panose-1="2 3 6 0 0 1 1 1 1 1"
 ascent="800" descent="-200" baseline="0" />
 <missing-glyph horiz-adv-x="500" />
 <!-- glyph definitions go here -->
 </font-face>

Figure 8-15. Korean syllables from an external font

Once that is done, Example 8-13 can reference the font in that external file. For the sake
of consistency, the value of the font-family that you use in this SVG file should match
the value in the external file.

Example 8-13. Use of an external font

<defs>
 <font-face font-family="bakbatn">
 <font-face-src>
 <font-face-uri xlink:href="kfont.svg#kfont-defn"/>
 </font-face-src>
 </font-face>
</defs>

<text font-size="28" x="20" y="40" style="font-family: bakbatn;">
 서울 - 대한민국
</text>

8.8 Text on a Path

Text does not have to go in a straight horizontal or vertical line. It can follow any
arbitrary path; simply enclose the text in a <textPath> element that uses an xlink:href
attribute to refer to a previously defined <path> element. Letters will be rotated to stand
"perpendicular" to the curve (that is, the letter's baseline will be tangent to the curve).
Text along a gently curving and continuous path is easier to read than text that follows a
sharply angled or discontinuous path.

The path you reference in the <textPath> element will not be
displayed. That's why Example 8-14 has to draw the paths with
<use> elements.

 126

Example 8-14. Examples of textPath

<defs>
<path id="curvepath"
 d="M30 40 C 50 10, 70 10, 120 40 S 150 0, 200 40"
 style="stroke: gray; fill: none;"/>

<path id="round-corner"
 d="M250 30 L 300 30 A 30 30 0 0 1 330 60 L 330 110"
 style="stroke: gray; fill: none;"/>

<path id="sharp-corner"
 d="M 30 110 100 110 100 160"
 style="stroke: gray; fill: none;"/>

<path id="discontinuous"
 d="M 150 110 A 40 30 0 1 0 230 110 M 250 110 270 140"
 style="stroke: gray; fill: none;"/>
</defs>

<use xlink:href="#curvepath"/>
<text style="font-size: 12;">
 <textPath xlink:href="#curvepath">
 Following a cubic Bézier curve.
 </textPath>
</text>

<use xlink:href="#round-corner"/>
<text style="font-size: 12;">
 <textPath xlink:href="#round-corner">
 Going 'round the bend
 </textPath>
</text>

<use xlink:href="#sharp-corner"/>
<text style="font-size: 12;">
 <textPath xlink:href="#sharp-corner">
 Making a quick turn
 </textPath>
</text>

<use xlink:href="#discontinuous"/>
<text style="font-size: 12;">
 <textPath xlink:href="#discontinuous">
 Text along a broken path
 </textPath>
</text>

Example 8-14 produces Figure 8-16; Figure 8-17 shows you what it looks like if we draw
the text without the underlying paths.

Figure 8-16. Text along a path (with paths shown)

 127

Figure 8-17. Text along a path (paths not shown)

You may adjust the beginning point of the text along its path by setting the startOffset
attribute to a percentage or to a length. For example, startOffset="25%" will start the
text one-fourth of the distance along the path, and startOffset="30" will start the text
at a distance of thirty user units from the beginning of the path. If you wish to center text
on a path, as in Example 8-15, set textanchor="middle" on the <text> element and
startOffset="50%" on the <textPath> element. Text that falls beyond the ends of the
path will not be displayed, as shown in the left half of Figure 8-18.

Example 8-15. Text Length and startOffset

<defs>
<path id="short-corner" transform="translate(40,40)"
 d="M0 0 L 30 0 A 30 30 0 0 1 60 30 L 60 60"
 style="stroke: gray; fill: none;"/>

<path id="long-corner" transform="translate(140,40)"
 d="M0 0 L 50 0 A 30 30 0 0 1 80 30 L 80 80"
 style="stroke: gray; fill: none;"/>
</defs>

<use xlink:href="#short-corner"/>
<text style="font-size: 12;">
 <textPath xlink:href="#short-corner">
 This text is too long for the path.
 </textPath>
</text>

<use xlink:href="#long-corner"/>
<text style="font-size: 12; text-anchor: middle;">
 <textPath xlink:href="#long-corner" startOffset="50%">

 128

 centered
 </textPath>
</text>

Figure 8-18. Effects of long text and startOffset

8.9 Whitespace and Text

You may change the way that SVG handles whitespace (blanks, tabs, and newline
characters) within text by changing the value of the xml:space attribute. If you specify a
value of default (which, coincidentally, is the default value), SVG will handle
whitespace as follows:

• Remove all newline characters
• Change all tabs to blanks
• Remove all leading and trailing blanks
• Change any run of intermediate blanks to a single blank

Thus, this string, where \t represents a tab and \n represents a newline, and an underscore
represents a blank, this text:

 \n\n___abc_\t\t_def_\n\n__ghi

will render as:

 abc_def_ghi

The other setting of xml:space is preserve. With this setting, SVG will simply convert
all newline and tab characters to blanks, and then display the result, including leading and
trailing blanks. the same text:

 \n\n___abc_\t\t_def_\n\n__ghi

then renders as:

 _____abc____def_____ghi

SVG's handling of whitespace is not like that of HTML. SVG's
default handling eliminates all newlines; HTML changes internal
newlines to a space. SVG's preserve method converts newlines to
blanks; HTML's <pre> element does not There is no newline in

 129

SVG 1.0; this bothers people until they realize that SVG text is
oriented towards graphic display, not textual content (as in
XHTML).

8.10 Case Study -- Adding Text to a Graphic

Figure 8-19 adds Korean and English text to the Korean national symbol shown in Figure
6-5. The text is centered along an elliptical path. The additional SVG in Example 8-16 is
shown in boldface.

Example 8-16. Text case study

<defs>
 <font-face font-family="bakbatn">
 <font-face-src>
 <font-face-uri xlink:href="kfont.svg#kfont-defn" />
 </font-face-src>
 </font-face>

 <path id="upper-curve" d="M -8 154 A 162 130 0 1 1 316 154" />
 <path id="lower-curve" d="M -21 154 A 175 140 0 1 0 329 154" />
</defs>

<ellipse cx="154" cy="154" rx="150" ry="120" style="fill: #999999;"/>
<ellipse cx="152" cy="152" rx="150" ry="120" style="fill: #cceeff;"/>

<!-- large light red semicircle fills upper half,
 followed by small light red semicircle that dips into
 lower left half of symbol -->
<path d="M 302 152 A 150 120, 0, 1, 0, 2 152
 A 75 60, 0, 1, 0, 152 152" style="fill: #ffcccc;"/>

<!-- light blue semicircle rises into upper right half of symbol -->
<path d="M 152 152 A 75 60, 0, 1, 1, 302 152" style="fill: #cceeff;"/>

<text font-family="bakbatn" style="font-size: 28; text-anchor: middle;">
 <textPath xlink:href="#upper-curve" startOffset="50%">
 서울 - 대한민국
 </textPath>
</text>

<text style="font-size: 14pt; text-anchor: middle;">
 <textPath xlink:href="#lower-curve" startOffset="50%">
 Seoul - Republic of Korea
 </textPath>
</text>

Figure 8-19. Text along path added to graphic

 130

 131

Chapter 9. Clipping and Masking

Sometimes you don't want to see an entire picture; for example, you might wish to draw a
picture as though it were seen through binoculars or a keyhole; everything outside the
boundary of the eyepieces or keyhole will be invisible. Or, you might want to set a mood
by showing an image as though viewed through a translucent curtain. SVG accomplishes
such effects with clipping and masking.

9.1 Clipping to a Path

When you create an SVG document, you establish its viewport by specifying the width
and height of the area you're interested in. This automatically becomes your clipping area;
anything drawn outside these limits will not be displayed. You can establish a clipping
area of your own with the <clipPath> element. Here's the simplest case: establishing a
rectangular clip path. Inside the <clipPath> element will be the <rect> we wish to clip
to. The rectangle itself is not displayed; we only love it for its coordinates. Thus, we are
free to add any fill or stroke styles we wish to the elements within the <clipPath>. On
the object to be clipped we add a clip-path style property whose value references the
<clipPath> element. Note that the property is hyphenated and not capitalized; the
element is capitalized and not hyphenated. In Example 9-1, the object being clipped is a
small version of the cat picture from Chapter 1, producing Figure 9-1.

Example 9-1. Clipping to a rectangular path

<defs>
<clipPath id="rectClip">
 <rect id="rect1" x="15" y="15"
 width="40" height="45"
 style="stroke: gray; fill: none;"/>
</clipPath>
</defs>

<!-- clip to rectangle -->
<use xlink:href="minicat.svg#cat" style="clip-path: url(#rectClip);"/>

<!--
 for reference, show entire picture with clipping area outlined -->
<g transform="translate(100,0)">
 <use xlink:href="#rect1"/> <!-- show clip rectangle -->
 <use xlink:href="minicat.svg#cat"/>
</g>

Figure 9-1. Simple rectangular clipping

 132

As the name <clipPath> implies, you can clip to any arbitrary path. Indeed, the
<clipPath> element can contain any number of basic shapes, <path> elements, or
<text> elements. Example 9-2 shows a group of shapes clipped to a curved path and the
same group of shapes clipped by text.

Example 9-2. Complex clip paths

<defs>
<clipPath id="curveClip">
 <path id="curve1"
 d="M5 55 C 25 5, 45 -25, 75 55, 85 85, 20 105, 40 55 Z"
 style="stroke: black; fill: none;"/>
</clipPath>

<clipPath id="textClip">
 <text id="text1" x="20" y="20" transform="rotate(60)"
 style="font-size: 48pt; stroke: black; fill: none;">
 CLIP
 </text>
</clipPath>

<g id="shapes">
<rect x="0" y="50" width="90" height="60" style="fill: #999;"/>
<circle cx="25" cy="25" r="25" style="fill: #666;"/>
<polygon points="30 0 80 0 80 100" style="fill: #ccc;"/>
</g>
</defs>

<!-- draw with curved clip-path -->
<use xlink:href="#shapes" style="clip-path: url(#curveClip);" />

<g transform="translate(100,0)">
 <use xlink:href="#shapes"/>
 <use xlink:href="#curve1"/> <!-- show clip path -->
</g>

<!-- draw with text as clip-path -->
<g transform="translate(0,150)">
 <use xlink:href="#shapes" style="clip-path: url(#textClip);"/>
</g>

<g transform="translate(100,150)">
 <use xlink:href="#shapes"/>
 <use xlink:href="#text1"/>
</g>

To help you see the areas better, the preceding SVG draws the clipping path above the
entire figure; you see this in the right half of Figure 9-2.

The coordinates for the preceding clip paths have been specified in user coordinates. If
you wish to express coordinates in terms of the object bounding box, then set

 133

clipPathUnits to objectBoundingBox (the default is userSpaceOnUse). Example 9-3
uses a clip path that will produce a circular (or oval) window on any object that it's
applied to.

Example 9-3. clipPathUnits using objectBoundingBox

<defs>
<clipPath id="circularPath" clipPathUnits="objectBoundingBox">
 <circle cx="0.5" cy="0.5" r="0.5"/>
</clipPath>

<g id="shapes">
<rect x="0" y="50" width="100" height="50" style="fill: #999;"/>
<circle cx="25" cy="25" r="25" style="fill: #666;"/>
<polygon points="30 0 80 0 80 100" style="fill: #ccc;"/>
</g>

<g id="words">
<text x="0" y="19" style="font-size: 12;">
<tspan x="0" y="19">If you have form'd a circle</tspan>
<tspan x="12" y="33">to go into,</tspan>
<tspan x="0" y="47">Go into it yourself</tspan>
<tspan x="12" y="61">and see how you would do.</tspan>
<tspan x="50" y="80">­William Blake</tspan>
</text>
</g>
</defs>

<use xlink:href="#shapes" style="clip-path: url(#circularPath);" />
<use xlink:href="#words" transform="translate(110,0)"
 style="clip-path: url(#circularPath);"/>

Figure 9-2. Complex path clipping

 134

In Figure 9-3, the geometric figures happen to have a square bounding box, so the
clipping appears circular. The text is bounded by a rectangular area, so the clipping area
appears to be an oval.

Figure 9-3. Use of a circular/oval clipping path

Specify a clipping rectangle for <marker> and <symbol> tags with
the clip style property. Its value is four whitespace-separated
numbers specifying the rectangle's top, right, bottom, and left
bounds. This sets the clip rectangle to match the marker or symbol's
viewBox, rather than its viewport.

9.2 Masking

A mask in SVG is the exact opposite of the mask you wear to a costume party. With a
costume party mask, the parts that are opaque hide your face; the parts that are
translucent let people see your face dimly, and the holes (which are transparent) let
people see your face clearly. An SVG mask, on the other hand, transfers its transparency
to the object that it masks. Where the mask is opaque, the pixels of the masked object are
opaque. Where the mask is translucent, so is the object, and the transparent parts of the
mask make the corresponding parts of the masked object invisible.

You use the <mask> element to create a mask. You may specify the mask's dimensions
with the x, y, width, and height attributes. These dimensions are in terms of the masked
objectBoundingBox. If you want the dimensions to be in terms of user space coordinates,
set maskUnits to userSpaceOnUse.

Between the beginning <mask> and ending </mask> tags are any basic shapes, text, or
paths that you wish to use as the mask. The coordinates on these elements are expressed
in user coordinate space by default. If you wish to use the object bounding box for the
contents of the mask, set maskContentUnits to objectBoundingBox. (The default is
userSpaceOnUse.)

The question then becomes: how does SVG determine the transparency, or alpha value of
the mask? We know that each pixel is described by four values: its red, green, and blue
color value, and its opacity. While at first glance it would seem logical to use only the
opacity value, SVG decides to use all the information available to it rather than throwing
away three-fourths of a pixel's information. SVG uses this formula:

 135

(0.2125 * red value +
0.7154 * green value +
0.0721 * blue value) *
 opacity value

where all of the values are floating point numbers in the range zero to one. You may be
surprised that the proportions aren't equal, but if you look at fully saturated red, green,
and blue, the green appears to be the brightest, red darker, and blue the darkest. (You can
see this in Figure 9-4.) The darker the color, the smaller the resulting alpha value will be,
and the less opaque the masked object will be.

Figure 9-4. Effect of color values on transparency

Example 9-4 creates black text and a black circle masked by a totally opaque red, green,
blue, and white square. The text and circle are grouped together, and the group uses a
mask style property to reference the appropriate mask.

Example 9-4. Masking with opaque colors

<defs>
<mask id="redmask" x="0" y="0" width="1" height="1"
 maskContentUnits="objectBoundingBox">
 <rect x="0" y="0" width="1" height="1" style="fill: #f00;"/>
</mask>

<mask id="greenmask" x="0" y="0" width="1" height="1"
 maskContentUnits="objectBoundingBox">
 <rect x="0" y="0" width="1" height="1" style="fill: #0f0;"/>
</mask>

<mask id="bluemask" x="0" y="0" width="1" height="1"
 maskContentUnits="objectBoundingBox">
 <rect x="0" y="0" width="1" height="1" style="fill: #00f;"/>
</mask>

<mask id="whitemask" x="0" y="0" width="1" height="1"
 maskContentUnits="objectBoundingBox">
 <rect x="0" y="0" width="1" height="1" style="fill: #fff;"/>
</mask>
</defs>

<!-- display the colors to show relative brightness (luminance) -->
<rect x="10" y="10" width="50" height="50" style="fill: #f00;"/>

 136

<rect x="70" y="10" width="50" height="50" style="fill: #0f0;"/>
<rect x="130" y="10" width="50" height="50" style="fill: #00f;"/>
<rect x="190" y="10" width="50" height="50"
 style="fill: #fff; stroke: black;"/>

<g style="mask: url(#redmask);
 font-size: 14pt; text-anchor: middle;">
<circle cx="35" cy="115" r="25" style="fill: black;"/>
<text x="35" y="80">Red</text>
</g>

<g style="mask: url(#greenmask);
 font-size: 14pt; text-anchor: middle;">
<circle cx="95" cy="115" r="25" style="fill: black;"/>
<text x="95" y="80">Green</text>
</g>

<g style="mask: url(#bluemask);
 font-size: 14pt; text-anchor: middle;">
<circle cx="155" cy="115" r="25" style="fill: black;"/>
<text x="155" y="80">Blue</text>
</g>

<g style="mask: url(#whitemask);
 font-size: 14pt; text-anchor: middle;">
<circle cx="215" cy="115" r="25" style="fill: black;"/>
<text x="215" y="80">White</text>
</g>

Figuring out the interaction between color, opacity, and final alpha
value is not exactly intuitive. If you fill and/or stroke the mask
contents in white, the "color factor" adds up to 1.0, and the opacity
will then be the only factor that controls the mask's alpha value.
Example 9-5 is written this way, and the result is in Figure 9-5.

Figure 9-5. Alpha value equal to opacity

Example 9-5. Mask alpha using opacity only

<defs>
<mask id="fullmask" x="0" y="0" width="1" height="1"
 maskContentUnits="objectBoundingBox">
 <rect x="0" y="0" width="1" height="1"
 style="fill-opacity: 1.0; fill: white;"/>
</mask>

<mask id="three-fourths" x="0" y="0" width="1" height="1"

 137

 maskContentUnits="objectBoundingBox">
 <rect x="0" y="0" width="1" height="1"
 style="fill-opacity: 0.75; fill: white;"/>
</mask>

<mask id="one-half" x="0" y="0" width="1" height="1"
 maskContentUnits="objectBoundingBox">
 <rect x="0" y="0" width="1" height="1"
 style="fill-opacity: 0.5; fill: white;"/>
</mask>

<mask id="one-fourth" x="0" y="0" width="1" height="1"
 maskContentUnits="objectBoundingBox">
 <rect x="0" y="0" width="1" height="1"
 style="fill-opacity: 0.25; fill: white;"/>
</mask>
</defs>

<g style="font-size: 14pt; text-anchor:middle; fill:black;">
 <g style="mask: url(#fullmask);">
 <circle cx="35" cy="35" r="25"/>
 <text x="35" y="80">100%</text>
 </g>

 <g style="mask: url(#three-fourths);">
 <circle cx="95" cy="35" r="25"/>
 <text x="95" y="80">75%</text>
 </g>

 <g style="mask: url(#one-half);">
 <circle cx="155" cy="35" r="25"/>
 <text x="155" y="80">50%</text>
 </g>

 <g style="mask: url(#one-fourth);">
 <circle cx="215" cy="35" r="25"/>
 <text x="215" y="80">25%</text>
 </g>
</g>

9.3 Case Study -- Masking a Graphic

Example 9-6 adds a JPG image to the image that was constructed in Section 8.10. As you
can see in Figure 9-6 (reduced to save space and in grayscale to avoid using color ink),
the image obscures the curve inside the main ellipse, and the blue sky intrudes horribly
on the pale red section.

Example 9-6. Unmasked image

<defs>
 <font-face font-family="bakbatn">
 <font-face-src>
 <font-face-uri xlink:href="kfont.svg#kfont-defn"/>
 </font-face-src>
 </font-face>

 138

</defs>

<!-- draws ellipse and text -->
<use xlink:href="ksymbol.svg#ksymbol"/>

<image xlink:href="kwanghwamun.jpg" x="72" y="92"
 width="160" height="120"/>

Figure 9-6. Unmasked image

The solution is to fade out the edges of the picture, which is easily done by using a radial
gradient as a mask. Here's the code to be added to the <defs> section of the document:

<radialGradient id="fade">
 <stop offset="0%" style="stop-color: white; stop-opacity: 1.0;"/>
 <stop offset="85%" style="stop-color: white; stop-opacity: 0.5;"/>
 <stop offset="100%" style="stop-color: white; stop-opacity: 0.0;"/>
</radialGradient>
<mask id="fademask">
 <rect x="72" y="92" width="160" height="120"
 style="fill: url(#fade);"/>
</mask>

Then add a mask reference to the <image> tag, resulting in Figure 9-7:

<image xlink:href="kwanghwamun.jpg" x="72" y="92"
 width="160" height="120"
 style="mask: url(#fademask);"/>

Figure 9-7. Masked image

 139

Using less of the picture can substantially improve the graphic as a whole.

 140

Chapter 10. Filters

The preceding chapters have given you a basis for creating graphics that convey
information with great precision and detail. If you're going on a spring picnic, you want a
precise map. When you look in the newspaper for the graphics that describe the weather
forecast, you want "just the facts."

If you're asked later to describe the day of the picnic, nobody wants a crisp recitation of
meteorological statistics. Similarly, nobody wants to see a graphic of a spring flower
composed of pure vectors; Figure 10-1 fails totally to convey any warmth or charm.

Figure 10-1. Flower composed of plain vectors

Graphics are often designed to evoke feelings or moods as much as they are meant to
convey information. Artists who work with bitmap graphics have many tools at their
disposal to add such effects; they can produce blurred shadows, selectively thicken or
thin lines, add textures to part of the drawing, make an object appear to be embossed or
beveled, etc.

10.1 How Filters Work

Although SVG is not a bitmap description language, it still lets you use some of these
same tools. When an SVG viewer program processes a graphic object, it will render the
object to some bitmapped output device; at some point the program will convert the
object's description into the appropriate set of pixels that appear on the output device.
Now let's say that you use the SVG <filter> element to specify a set of operations that
display an object with a blurred shadow offset slightly to the side, and attach that filter to
an object:

<filter id="drop-shadow">
 <!-- filter operations go here -->
</filter>

<g id="spring-flower"
 style="filter: url(#drop-shadow);"/>
 <!-- drawing of flower goes here -->
</g>

 141

Because the flower uses a filter in its presentation style, SVG will not render the flower
directly to the final graphic. Instead, SVG will render the flower's pixels into a temporary
bitmap. The operations specified by the filter will be applied to that temporary area and
their result will be rendered into the final graphic.

10.2 Creating a Drop Shadow

In Chapter 4, in Section 4.3.5, we created a drop shadow by offsetting a gray ellipse
underneath a colored ellipse. It worked, but it wasn't elegant. Let's investigate a way to
create a better-looking drop shadow with a filter.

10.2.1 Establishing the Filter's Bounds

The <filter> element has attributes that describe the clipping region for a filter. You
specify an x, y, width, and height in terms of the percentage of the filtered object's
bounding box. (That is the default.) Any portion of the resulting output that's outside the
bounds will not be displayed. If you are intending to apply a filter to many objects, you
may want to omit these attributes altogether and take the default values of x equal to
-10%, y equal to -10%, width equal to 120%, and height equal to 120%. This gives
extra space for filters — such as the drop shadow that we're constructing — that produce
output larger than their input.

These attributes are in terms of the filtered object's bounding box; specifically,
filterUnits has a value of objectBoundingBox by default. If you wish to specify
boundaries in user units, then set the attribute's value to userSpaceOnUse.

10.2.2 Using feGaussianBlur for a Drop Shadow

Between the beginning and ending <filter> tags are the filter primitives that perform
the operations you desire. Each primitive has one or more inputs, and exactly one output.
An input can be the original graphic, specified as SourceGraphic, the alpha (opaqueness)
channel of the graphic, specified as SourceAlpha, or the output of a previous filtering
primitive. You will probably use the alpha source more often, since it avoids the
interactions of alpha and color, as described in Chapter 9, in Section 9.2.

Example 10-1 is our first attempt to produce a drop shadow on the flower, using the
<feGaussianBlur> filter primitive. We specify SourceAlpha as its input (the in
attribute), and the amount of blur with the stdDeviation attribute. The larger this
number, the greater the blur. If you give two numbers separated by whitespace as the
value for stdDeviation, the first number is taken as the blur in the x-direction and the
second as the blur in the y-direction.

Example 10-1. First attempt to produce a drop shadow

<defs>

 142

<filter id="drop-shadow">
 <feGaussianBlur in="SourceAlpha" stdDeviation="2"/>
</filter>

</defs>
<g id="flower" filter="url(#drop-shadow)">
 <!-- drawing here -->
</g>

Figure 10-2 shows the result, which is probably not what you thought it would be.

Figure 10-2. Result of first attempt at a drop shadow

Don't be surprised; remember, the filter returns the output, which is a blurred alpha
channel, instead of the original source graphic. We could get the effect we want by
putting the flower within the <defs> section of the document and changing our SVG to
read:

<use xlink:href="#flower" filter="url(#drop-shadow)"
 transform="translate(4, 4)"/>
<use xlink:href="#flower"/>

However, that would require SVG to execute all the elements that make up the flower
twice. Instead, we will add more filter primitives, so that all the work can be handled
during rendering.

10.2.3 Storing, Chaining, and Merging Filter Results

Example 10-2 is the updated filter.

Example 10-2. Improved drop shadow filter

<filter id="drop-shadow">
 <feGaussianBlur in="SourceAlpha" stdDeviation="2" result="blur"/>
[1]
 <feOffset in="blur" dx="4" dy="4" result="offsetBlur"/> [2]
 <feMerge> [3]
 <feMergeNode in="offsetBlur"/>
 <feMergeNode in="SourceGraphic"/>
 </feMerge>
</filter>

 143

[1] The result attribute specifies that the result of this primitive can be referenced later
by the name blur. This isn't like an XML id; the name you give is a local name that's
only valid for the duration of the primitives contained in the current <filter>.

[2] The <feOffset> primitive takes its input, in this case the blur result from the
Gaussian blur, offsets it by the specified dx and dy values, and stores the resulting bitmap
under the name offsetBlur.

[3] The <feMerge> primitive encloses a list of <feMergeNode> elements, each of which
specifies an input. The inputs are stacked one on top of another in the order that they
appear. In this case, we want the offsetBlur below the original sourceGraphic.

We now refer to this improved drop shadow filter sequence when drawing the flower,
producing a surprisingly pleasant image in Figure 10-3.

<g id="flower" filter="url(#drop-shadow)">
 <!-- drawing here -->
</g>

Figure 10-3. Result of improved drop shadow

When you first start working with filters, I strongly recommend that
you do things in stages, testing filters one at a time. I created large
numbers of stunningly ugly results during botched attempts to
discover how a filter really works. You probably will, too. We'll just
keep it as our little secret.

Similarly, when you first learn about filters, you will be tempted to
apply as many of them as possible to a drawing, just to see what will
happen. Since your purpose is experimentation, go ahead. Once you
finish experimenting and begin production work, the purpose of the
filter changes. Filters should support and enhance your message, not
overwhelm it. Judicious use of one or two filters is a buoy; a flotilla
of filters almost always sinks the message.

10.3 Creating a Glowing Shadow

 144

The drop shadow works well on the flower, but looks totally unimpressive when applied
to text, as we see in Figure 10-4.

Figure 10-4. Drop shadow applied to text

Instead, we'd like a glowing turquoise area to surround the text, and we can do this with
the <feColorMatrix> primitive to change black to a different color.

10.3.1 The feColorMatrix Element

The <feColorMatrix> element allows you to change color values in a very generalized
way. The sequence of primitives used to create a glowing turquoise shadow is shown in
Example 10-3.

Example 10-3. Glow filter

 <filter id="glow">
 <feColorMatrix type="matrix" [1]
 values=
 "0 0 0 0 0
 0 0 0 0.9 0
 0 0 0 0.9 0
 0 0 0 1 0"/>
 <feGaussianBlur stdDeviation="2.5" [2]
 result="coloredBlur"/> [3]
 <feMerge> [4]
 <feMergeNode in="coloredBlur"/>
 <feMergeNode in="SourceGraphic"/>
 </feMerge>
</filter>

[1] The <feColorMatrix> is a very versatile primitive, allowing you to modify any of
the color or alpha values of a pixel. When the type attribute equals matrix, you must set
the value to a series of twenty numbers describing the transformation.

To set up a transformation that adds color to the alpha values, set up your matrix values
as follows:

values=
 "0 0 0 red 0
 0 0 0 green 0
 0 0 0 blue 0
 0 0 0 1 0"

where the red, green, and blue values are decimal numbers which usually range from zero
to 1. In this example, we've set the red to zero, and the green and blue values to 0.9,
which will produce a bright cyan color.

 145

You'll note that we didn't specify an in attribute for the input to this primitive; the default
is to use the SourceGraphic. We also didn't put a result attribute into this primitive.
This means that the color matrix operation's output is available only as the implicit input
to the next filter primitive. If you use this shortcut, then the next filter primitive must not
have an in attribute.

[2] Now that we have a cyan-colored source, we use Gaussian blur to spread it out.

[3] The resulting cyan-colored blur is stored for future reference as coloredBlur.

[4] As in the previous example, we use <feMerge> to output the glow underneath the
object in question.

With these two filters, we can create the new, improved Figure 10-5 with SVG like this:

<g id="flower" style="filter: url(#drop-shadow);">
 <!-- draw the flower -->
</g>
<text x="120" y="50"
 style="filter: url(#glow); fill: #003333; font-size:18;>
Spring <tspan x="120" y="70">Flower</tspan>
</text>

Figure 10-5. Drop shadow and glowing text

10.3.2 More About the feColorMatrix Element

We started with the most general kind of color matrix, where you get to specify any
values you wish. There are three other values for the type attribute. Each of these
"built-in" color matrices accomplishes a particular visual task and has its own way of
specifying values.

hueRotate

The values is a single number that tells how many degrees the color values
should be rotated. The mathematics used to accomplish this are very similar to
those used in the rotate transformation as described in Section 5.5 in Chapter 5.

 146

The relation between rotation and resulting color is not at all obvious, as shown in
Figure 10-6.

Figure 10-6. Result of hueRotate on fully saturated colors

saturate

The values attribute specifies a single number in the range zero to one. The
smaller the number, the more "washed out" the colors will be, as you see in
Figure 10-7.

Figure 10-7. Result of saturate on primary colors

luminanceToAlpha

This filter creates an alpha channel based upon a color's luminance. The
luminance is the inherent "brightness" of a color, as described in Section 9.2 in
Chapter 9. In Figure 10-8, the luminance of the colored squares is used as an
alpha channel for solid black squares. The lighter a color, the less the
transparency it confers upon the filtered object. The values attribute is ignored
for this type.

Figure 10-8. Result of luminanceToAlpha

 147

10.4 The feImage Filter

Up to this point, we've used only the original graphic or its alpha channel as input to a
filter. SVG's <feImage> element lets you use any JPG, PNG, or SVG file; or an SVG
element with an id attribute as input to a filter. In Example 10-4, we import a picture of
the sky with a cloud in it to use as a background in the picture of the flower.

Example 10-4. Using the feImage element

<defs>
<filter id="sky-shadow" filterUnits="objectBoundingBox">
 <feImage xlink:href="sky.jpg" result="sky"/>
 <feGaussianBlur in="SourceAlpha" stdDeviation="2" result="blur"/>
 <feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>
 <feMerge>
 <feMergeNode in="sky"/>
 <feMergeNode in="offsetBlur"/>
 <feMergeNode in="SourceGraphic"/>
 </feMerge>
</filter>
</defs>

<g id="flower" style="filter: url(#sky-shadow)">
 <!-- flower graphic goes here -->
</g>

<!-- show original image -->
<image xlink:href="sky.jpg" x="170" y="10"
 width="122" height="104"/>

Since we're referencing a JPG image, it stretches to fill the bounding box of the filtered
object. Figure 10-9 shows the result, with the original picture of the sky shown at right at
its true size.

Figure 10-9. Result of feImage

10.5 The feComponentTransfer Filter

The problem with the background is that it is too dark. Using saturate isn't the answer;
it raises or lowers all the color levels. What we need to do is increase the level of green

 148

and red more than the blue level, and the <feComponentTransfer> element lets us do
just that.

You adjust the levels of red, green, blue, and alpha by placing a <feFuncR>, <feFuncG>,
<feFuncB>, and <feFuncA> element inside the <feComponentTransfer>. Each of these
sub-elements may independently specify a type attribute that tells how that particular
channel is to be modified.

To simulate the effect of a brightness control, you specify the linear function, which
places the current color value C into the formula: slope * C + intercept. The
intercept provides a "base value" for the result; the slope is a simple scaling factor.
Example 10-5 uses a filter that adds a brightened sky to the flower with the drop shadow.
Note that the red and green channels are adjusted differently than the blue channel. This
dramatically brightens the sky in Figure 10-10.

Example 10-5. Changing brightness with feComponentTransfer

<filter id="brightness-shadow" filterUnits="objectBoundingBox">
 <feImage xlink:href="sky.jpg" result="sky"/>
 <feComponentTransfer in="sky" result="sky">
 <feFuncB type="linear" slope="3" intercept="0"/>
 <feFuncR type="linear" slope="1.5" intercept="0.2"/>
 <feFuncG type="linear" slope="1.5" intercept="0.2"/>
 </feComponentTransfer>
 <feGaussianBlur in="SourceAlpha" stdDeviation="2" result="blur"/>
 <feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>
 <feMerge>
 <feMergeNode in="sky"/>
 <feMergeNode in="offsetBlur"/>
 <feMergeNode in="SourceGraphic"/>
 </feMerge>
</filter>

Figure 10-10. Result of linear component transfer

A simple linear adjustment will add and multiply the same amount to every color value
within a channel. This is not the case with the gamma function, which places the current
color value C into the formula: amplitude * Cexponent + offset. The offset
provides a "base value" for the result; the amplitude is a simple scaling factor, and

 149

exponent makes the result a curved line rather than a straight line. Since the color
value is always between zero and one, the larger your exponent, the smaller the modified
value will be. Figure 10-11 shows the curves generated with exponent values of 0.6 (the
solid line) and 0.3 (the dashed line). Looking at the dashed line, you can see that a low
original color value such as 0.1 will be boosted to 0.5, a 400% increase. An original value
of 0.5, on the other hand, will increase only 80% to 0.9.

Figure 10-11. Gamma curve functions

When you specify a gamma filter, you set the amplitude, exponent, and offset
attributes to correspond to the values in the preceding formula. Example 10-6 uses
gamma correction to adjust the sky. In this particular case, the differences between Figure
10-12 and Figure 10-10 are minor, but there are some images which can be improved
much more by one method than by the other.

Example 10-6. Gamma adjustment with feComponentTransfer

<feImage xlink:href="sky.jpg" result="sky"/>
<feComponentTransfer in="sky" result="sky">
 <feFuncB type="gamma"
 amplitude="1" exponent="0.2" offset="0"/>
 <feFuncR type="gamma"
 amplitude="1" exponent="0.707" offset="0"/>
 <feFuncG type="gamma"
 amplitude="1" exponent="0.707" offset="0"/>
</feComponentTransfer>

Figure 10-12. Result of using gamma correction

 150

The astute reader (that's you) may have observed that both linear and
gamma functions can produce color values greater than 1.0. The
SVG specification says that this is not an error; after each filter
primitive, the SVG processor will clamp the values to a valid range.
Thus, any value greater than 1.0 is reduced to 1.0 and any value less
than zero is set to zero.

<feComponentTransfer> has other options for the type attribute. Please note that you
may mix and match any of these; you can gamma correct the red values while
brightening the green values with a linear function.

identity

A "do-nothing" function. This lets you explicitly state that a color channel should
remain unaffected. (This is the default if you don't provide an <feFuncX> element
for a particular channel.)

table

Lets you divide the color values into a series of equal intervals, each of which will
be proportionately scaled. Consider the following remapping, which doubles the
value of the lowest quarter of the color range, squeezes the next quarter into a
range of one tenth, keeps the third quarter in exact proportion, then squeezes the
last quarter of the values into the remaining 15% of the color range:

Original value range Modified value range
0.00 -- 0.25 0.00 -- 0.50
0.25 -- 0.50 0.50 -- 0.60
0.50 -- 0.75 0.60 -- 0.85
0.75 -- 1.00 0.85 -- 0.100

You would specify this mapping for the green channel by listing the endpoints of
the remapped range in the tableValues attribute.

<feFuncG type="table"
 tableValues ="0.0, 0.5, 0.6, 0.85, 1.0"/>

If you are dividing the input spectrum into n different sections, you must provide
n+1 items in tableValues, separated by whitespace or commas.

discrete

Lets you divide the color values into a series of equal intervals, each of which will
be mapped to a single discrete color value. Consider the following remapping,
which maps the value of the lowest quarter of the color range to 0.125, sets the

 151

next quarter to 0.375, the third quarter to 0.625, and remaining quarter to 0.875.
(That is, each quarter of the range is mapped to its center point.)

Original value range Modified value
0.00 — 0.25 0.125
0.25 — 0.50 0.375
0.50 — 0.75 0.625
0.75 — 1.00 0.875

You would specify this mapping for the green channel by listing the discrete
values, separated by commas or whitespace, in the tableValues attribute.

<feFuncG type="discrete"
 tableValues ="0.125 0.375 0.625 0.875"/>

Dividing the input channel into n sections requires n entries in the tableValues
attribute. Exception: If you want to remap all the input values to a single output
value, you must place that entry into tableValues twice; thus, to set any input
value of the blue channel to 0.5, you would say: <feFuncB type="discrete"
tableValues="0.5 0.5"/>.

If you want to invert the range of color values for a channel (that is,
change increasing values from a minimum to maximum into
decreasing values from the maximum to the minimum), use this:

<feFuncX type="table"

 tableValues="maximum minimum"/>

Figure 10-13 shows the results of using discrete and table transfers as well as inversion
via a table transfer.

Figure 10-13. Result of using table and discrete transfers

Ordinarily, the values for red, green, or blue run in a straight line
from zero to one with zero being none of the color and one being

 152

100% of the color. This is called a linear color space. However,
when SVG calculates the color values between gradient stops (as
described in Chapter 7, in Section 7.2), it uses a special way of
representing color such that the values do not follow a straight line
from zero to one. This representation is called the standard RGB or
sRGB color space, and its use can make gradients much more
natural-looking. Figure 10-14 shows a comparison. The first gradient
goes from black to green, the second from red to green to blue, and
the third from black to white.

By default, filter arithmetic calculates any interpolated
("in-between") values in the linear RGB space, so if you apply a
filter to an object that has been filled with a gradient, you will get
results that aren't at all what you expect. In order to get the correct
result, you must tell the filter to do its calculations in sRGB space by
adding a color-interpolation-filters="sRGB" attribute to your
<filter> element. Alternatively, you may leave the filter alone and
apply color-interpolation="linearRGB" to the <gradient>
element, so that it uses the same color space as the default for filters.

Figure 10-14. Comparsion of linearRGB and sRGB

10.6 The feComposite Filter

So far we have combined the results of filters by using <feMerge> to layer the
intermediate results one over another. We will now investigate the much more general
<feComposite> element. This element takes two inputs, specified with the in and in2
attributes, and an operator that tells how the two are to be combined. In the following
explanation, we'll presume that you've specified in="A" and in2="B".

<feComposite operator="over" in="A" in2="B"/>

Produces the result of layering A over B, exactly as <feMergeNode> does. In fact,
<feMergeNode> is really just a convenient shortcut for a <feComposite> element
that specifies an over operation.

<feComposite operator="in" in="A" in2="B"/>

 153

The result is the part of A that is within the boundaries of B. Don't confuse the
name of this attribute value with the in attribute.

<feComposite operator="out" in="A" in2="B"/>

The result is the part of A that is outside the boundaries of B.

<feComposite operator="atop" in="A" in2="B"/>

The result is the part of A that is inside B, as well as the part of B outside A. To
quote the article in which these operators were first defined: "...paper atop table
includes paper where it is on top of table, and table otherwise; area beyond the
edge of the table is out of the picture." [1]

[1] "Compositing Digital Images," T. Porter, T. Duff, SIGGRAPH '84
Conference Proceedings, Association for Computing Machinery, Volume
18, Number 3, July 1984.

<feComposite operator="xor" in="A" in2="B"/>

The result is the part of A that is outside B together with the part of B that is
outside A.

<feComposite in="A" in2="B" operator="arithmetic" .../>

The ultimate in flexibility. You provide four coefficients, k1, k2, k3, and k4. The
result for each pixel is calculated as:

k1 * A * B + k2 * A + k3 * B + k4

The arithmetic operator is useful for doing a "dissolve" effect. If you
want to have a resulting image that is a% of image A and b% of
image B, set k1 and k4 to zero, k2 to a/100, and k3 to b/100. So, to
make a blend with 30% of A and 70% of B, you'd use this:

<feComposite in="A" in2="B" result="combined"

 k1="0" k2="0.30" k3="0.70" k4="0"/>

Figure 10-15 shows the combinations that we've described; the arithmetic blend is 50%
of A and 50% of B.

Figure 10-15. Result of using feComposite operators

 154

Example 10-7 uses the in and out operators to do "cut-outs." The drop shadow has been
eliminated from this example to produce a more visually pleasing result in Figure 10-16.

Example 10-7. Use of feComposite in and out

<defs>
<filter id="sky-in" filterUnits="objectBoundingBox">
 <feImage xlink:href="sky.jpg" result="sky"/>
 <feComposite in="sky" in2="SourceGraphic"
 operator="in"/>
</filter>

<filter id="sky-out" filterUnits="objectBoundingBox">
 <feImage xlink:href="sky.jpg" result="sky"/>
 <feComposite in="sky" in2="SourceGraphic"
 operator="out"/>
</filter>

<g id="flower">
 <!-- flower graphic goes here -->
</g>
</defs>

<use xlink:href="#flower" transform="translate(10,10)"
 style="filter: url(#sky-in);"/>

<use xlink:href="#flower" transform="translate(170,10)"
 style="filter: url(#sky-out);"/>

Figure 10-16. Result of feComposite in and out

10.7 The feBlend Filter

 155

But wait, there's more! Yes, filters provide yet another way to combine images. The
<feBlend> element requires two inputs, specified with the in and in2 attributes, and a
mode that tells how the inputs are to be blended. The possible values are: normal,
multiply, screen, lighten, and darken. Given opaque inputs <feBlend in="A"
in2="B" mode="m"/>, the following table shows the color of the resulting pixel for each
mode:

Mode Effect
normal B only; this is the same as the over operator in <feMerge>.

multiply As the name suggests, the resulting color value is the product of A's color value and B's color
value. This tends to dramatically weaken light colors.

screen Adds the color values together, then subtracts their product. This tends to strengthen light
colors more than dark colors.

darken Takes the minimum of A and B. This is the darker color, hence the name.
lighten Takes the maximum of A and B. This is the lighter color, hence the name.

Note that the appropriate calculation is done independently for each of the red, green, and
blue values. So, if you were to darken a pure red square with RGB values of
(100%, 0%, 0%) and a gray square with RGB values of (50%, 50%, 50%), the resulting
color would be (50%, 0%, 0%). If the inputs are not opaque, then all the modes except for
screen factor in the transparencies when making the calculations.

Finally, once the color value is calculated, the opacity of the result is determined by the
formula 1 - (1 - opacity of A) * (1 - opacity of B). Using this formula, two
opaque items will still be opaque; two items that are 50% opaque will combine to one
that is 75% opaque.

Figure 10-17 shows the result of blending an opaque solid gray (50%, 50%, 50%) bar
with opaque and 50% opaque color squares that have RGB values of black (#000),
yellow (#ff0), red (#f00), medium-bright green (#0c0), and dark blue (#009).

Figure 10-17. Result of feBlend in and out

10.8 The feFlood and feTile Filters

 156

The <feFlood> and <feTile> elements are "utility filters." Much like <feOffset>, they
allow you to carry out certain common operations within a series of filter primitives
rather than having to create extra SVG elements in your main graphic.

<feFlood> provides a solid colored area for use in compositing or merging. You provide
the flood-fill-color and flood-fill-opacity, and the filter does the rest.

<feTile> takes its input and tiles it horizontally and vertically to fill the area that is
specified in the filter. The size of the tile itself is specified by the <feImage> element
used as the input to <feTile>.

Example 10-8 uses <feComposite> to cut out the flooded and tiled area to the shape of a
flower. The image used as a tile is shown for reference at the upper right of Figure 10-18.

Example 10-8. Example of feFlood and feTile

<defs>
<filter id="flood-filter" x="0" y="0" width="100%" height="100%">
 <feFlood flood-color="#993300" flood-opacity="0.8" result="tint"/>
 <feComposite in="tint" in2="SourceGraphic"
 operator="in"/>
</filter>

<filter id="tile-filter" x="0" y="0" width="100%" height="100%">
 <feImage xlink:href="cloth.jpg" width="32" height="32"
 result="cloth"/>
 <feTile in="cloth" result="cloth"/>
 <feComposite in="cloth" in2="SourceGraphic"
 operator="in"/>
</filter>

<g id="flower">
 <!-- flower graphic goes here -->
</g>

</defs>
<use xlink:href="#flower" transform="translate(0, 0)"
 style="filter: url(#flood-filter);"/>
<use xlink:href="#flower" transform="translate(110,0)"
 style="filter: url(#tile-filter);"/>
<image xlink:href="cloth.jpg" x="220" y="10"
 width="32" height="32"/>

Figure 10-18. Result of feFlood and feTile elements

 157

10.9 Lighting Effects

If you draw a bright green circle with SVG, it looks like a refugee from a traffic signal,
glowing by its own light and otherwise lying flat on the screen. If you look at a circle cut
out of green construction paper, it looks more "real" because it is lit from an outside
source and has some texture. A circle cut from green plastic not only is lit from outside, it
also has reflected highlights. We call light from an outside source diffuse lighting, and
the highlights that reflect off a surface specular lighting, from the Latin speculum,
meaning mirror.

In order to achieve these effects, you must specify:

• The type of lighting you want (<feDiffuseLighting> or
<feSpecularLighting>)

• The object you want to light
• The color of light you are using
• The type of light source you want (<fePointLight>, <feDistantLight>, or

<feSpotLight>) and its location

You specify the location of a light source in three dimensions; this means you will need a
z-value in addition to x- and y-values. The relationship of the x-, y-, and z-axes is shown
in Figure 10-19; the positive z axis is "coming out of the screen" and pointing at you.

Both these lighting effects use the alpha channel of the object they are illuminating as a
bump map; higher alpha values are presumed to be "raised" above the surface of the
object.

Figure 10-19. Relationship of x-, y,- and z-axes

 158

10.9.1 Diffuse Lighting

The best way to show how the <feDiffuseLighting> element works is to jump right
into Example 10-9. We will shine a pale yellow light on a green circle, textured with the
curve pattern that we used in Example 7-1.

Example 10-9. Diffuse lighting with a point light source

<path id="curve" d="M 0 0 Q 5 20 10 10 T 20 20" [1]
 style="stroke: black; fill: none;"/>

<circle id="green-light" cx="50" cy="50" r="50" [2]
 style="fill: #060;"/>

<filter id="diff-light" color-interpolation-filters="sRGB" [3]
 x="0" y="0" width="100%" height="100%">

 <feImage xlink:href="#curve" result="tile" [4]
 width="20" height="20"/>

 <feTile in="tile" result="tile"/>

 <feColorMatrix type="luminanceToAlpha" in="tile" [5]
 result="alphaTile"/>

 <feDiffuseLighting in="alphaTile" [6]
 lighting-color="#ffffcc"
 surfaceScale="1" [7]
 diffuseConstant="0.5" [8]
 result="diffuseOutput"> [9]
 <fePointLight x="0" y="50" z="50"/> [10]
 </feDiffuseLighting> [11]

 <feComposite in="diffuseOutput" in2="SourceGraphic" [12]
 operator="in" result="diffuseOutput"/>

 <feBlend in="diffuseOutput" in2="SourceGraphic" [13]
 mode="screen"/>
</filter>

[1] Define the curve that will be used as the tile.

[2] Define the object that we want to illuminate.

[3] Set the color interpolation method and the boundaries for the filter.

[4] Tile the area of the filter with the curve image. This will become our bump map...

[5] ...so convert it to a pure alpha map, named alphaTile.

 159

[6] This tiled area is the input to the <feDiffuseLighting> element, which we will
illuminate with a pale yellow light,as specified by the lighting-color attribute.

[7] The surfaceScale attribute tells the height of the surface for an alpha value of 1.
(Specifically, it's the factor by which the alpha value is multiplied.)

[8] diffuseConstant is a multiplicative factor that is used in determining the final RGB
values of a pixel. It must have a value greater than or equal to zero; its default value is
one. The brighter your lighting-color, the smaller this number should be. Unless you
like having your picture washed out.

[9] The result of this filter will be named diffuseOutput.

[10] In this example, we are using a point light source, which means a source that radiates
light in all directions. We will position it at the left center of the area we wish to
illuminate, and set it 50 units in front of the screen. The farther you set it away from the
object, the more evenly the object is illuminated. In this example, we've moved the light
up close and personal to get the greatest possible effect.

[11] The end of the <feDiffuseLighting> element.

The input to this filter was an alpha channel; the output is a totally
opaque RGB bitmap; its alpha channel is equal to 1.0 at every point.

[12] We use <feComposite>'s in operator to clip the filter's output to the boundaries of
the source graphic (the circle).

[13] Finally, we use <feBlend> in screen mode, which tends to lighten the input, to
create the final image.

Once this is all defined, the following statement activates the filter on the desired object
to produce Figure 10-20:

<use xlink:href="#green-light" style="filter: url(#diff-light);"/>

Figure 10-20. Result of applying diffuse lighting filter

 160

10.9.2 Specular Lighting

Specular lighting, on the other hand, gives highlights rather than illumination. Example
10-10 shows how this works.

Example 10-10. Specular lighting with a distant light

<path id="curve" d="M 0 0 Q 5 20 10 10 T 20 20" [1]
 style="stroke: black; fill: none;"/>
<circle id="green-light" cx="50" cy="50" r="50"
 style="fill: #060;"/>

<filter id="spec-light" color-interpolation-filters="sRGB" [2]
 x="0" y="0" width="100%" height="100%">

 <feImage xlink:href="#curve" result="tile" [3]
 width="20" height="20"/>

 <feTile in="tile" result="tile"/>

 <feColorMatrix type="luminanceToAlpha" in="tile"
 result="alphaTile"/>

 <feSpecularLighting in="alphaTile" [4]
 lighting-color="#ffffcc"
 surfaceScale="1" [5]
 specularConstant="1" [6]
 specularExponent="4" [7]
 result="specularOutput"> [8]
 <feDistantLight elevation="25" azimuth="0"/> [9]
 </feSpecularLighting> [10]

 <feComposite in="specularOutput" in2="SourceGraphic" [11]
 operator="in" result="specularOutput"/>

 <feComposite in="specularOutput" in2="SourceGraphic" [12]
 operator="arithmetic" k1="0" k2="1" k3="1" k4="0"/>
</filter>

[1] As in the previous example, the first six lines define the curve and circle.

[2] The only difference between this and the previous example is the filter name.

[3] As in the previous example, this section tiles the curve into an alpha channel.

[4] Starts the definition of the <feSpecularLighting> filter and specifies the
lighting-color to be a pale yellow light.

[5] The surfaceScale attribute tells the height of the surface for an alpha value of 1.
(Specifically, it's the factor by which the alpha value is multiplied.)

 161

[6] specularConstant is a multiplicative factor that is used in determining the final
RGB values of a pixel. It must have a value greater than or equal to zero; its default value
is one. The brighter your lighting-color, the smaller this number should be.

[7] specularExponent is another factor that is used in determining the final RGB values
of a pixel. This attribute must have a value from 1 to 128; the default value is 1. The
larger this number, the more "shiny" the result.

[8] The result of this filter will be named specularOutput.

[9] In this example, we are using a distant light source, which means that is z-value is
effectively infinity. The elevation tells how far up or down the light is above the
horizon, and the azimuth specifies the angle of the light in the plane of the screen —
whether it's to the left, right, top, or bottom of the object being illuminated.

[10] The end of the <feSpecularLighting> element.

The input to this filter was an alpha channel; the output contains both
alpha and color information (unlike <feDiffuseLighting>, which
always produces an opaque result).

[11] We use <feComposite>'s in operator to clip the filter's output to the boundaries of
the source graphic (the circle).

[12] Finally, we use <feComposite> with the arithmetic operator to do a straight
addition of the lighting and the source graphic.

Once this is all defined, the following statement activates the filter on the desired object,
producing the highlighting relief effect in Figure 10-21.

<use xlink:href="#green-light" style="filter: url(#spec-light);"/>

Figure 10-21. Result of applying specular lighting filter

An excellent tutorial on lighting effects in three dimensions is
available at http://www.webreference.com/3d/lesson12/. We're
working in only two dimensions but much of the information is

http://www.webreference.com/3d/lesson12/

 162

applicable.

A third type of light source, <feSpotLight>, is specified with these attributes: x, y, and z,
the location of the spotlight (default value is zero); pointsAtX, pointsAtY, and
pointsAtZ, the place that the spotlight is pointing at (default value is zero);
specularExponent, a value that controls the focus for the light source (default value is
one); and limitingConeAngle, which restricts the region where the light is projected.
This is the angle between the spot light axis and the cone. Thus, if you want a 30 degree
spread for the entire cone, specify the angle as 15. (The default value is to allow
unlimited spread.)

10.10 Accessing the Background

In addition to the SourceGraphic and SourceAlpha filter inputs, a filtered object may
access the part of the image that has already been rendered onto the canvas when you
invoke a filter. These parts are called BackgroundImage (not BackgroundGraphic) and
BackgroundAlpha. In order to access these inputs, the filtered object must be within a
container element that has set the enable-background attribute to the value new.
Example 10-11 performs a Gaussian blur on the background alpha channel.

Example 10-11. Accessing the background

<defs>
<filter id="blur-background">
 <feGaussianBlur in="BackgroundAlpha" [1]
 stdDeviation="2" result="blur"/>
 <feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>
 <feMerge>
 <feMergeNode in="offsetBlur"/>
 <feMergeNode in="SourceGraphic"/>
 </feMerge>
</filter>
</defs>

<g enable-background="new"> [2]
 <circle cx="30" cy="30" r="30" style="fill: #fff;"/> [3]
 <rect x="0" y="0" width="60" height="60"
 style="filter: url(#blur-background); [4]
 fill: none; stroke: blue;" />
</g>

[1] This is similar to the blur filter used for drop shadows, except that the input is now the
BackgroundAlpha rather than the SourceAlpha.

[2] Since <g> is a container element, it is a perfect candidate for placing the
enable-background. All the children of this element will have access to the background
image and alpha.

 163

[3] We render a white circle onto the canvas; this makes it "invisible" against a white
background.

[4] We now draw a rectangle and use the filter. The background alpha that it picks up
will be circular, so Figure 10-22 shows a square with a circular shadow. (Strange, but
true!)

Figure 10-22. Result of accessing background alpha

10.11 The feMorphology Element

The <feMorphology> element lets you "thin" or "thicken" a graphic. You specify an
operator with a value of erode to thin or dilate to thicken a graphic. The radius
attribute tells us how much the lines are to be thickened or thinned. It's ordinarily applied
to alpha channels; in Example 10-12 we erode and dilate a simple line drawing. As you
see in Figure 10-23, erosion can wreak havoc on a drawing that has thin lines to begin
with.

Example 10-12. Thickening and thinning with feMorphology

<defs>
<g id="cat" stroke-width="2">
 <!-- drawing of a cat -->
</g>

<filter id="erode1">
 <feMorphology operator="erode" radius="1"/>
</filter>

<filter id="dilate2">
 <feMorphology operator="dilate" radius="2"/>
</filter>
</defs>

<use xlink:href="#cat"/>
<text x="75" y="170" style="text-anchor: middle;">Normal</text>

<use xlink:href="#cat" transform="translate(150,0)"
 style="filter: url(#erode1);"/>
<text x="225" y="170" style="text-anchor: middle;">Erode 1</text>

<use xlink:href="#cat" transform="translate(300,0)"
 style="filter: url(#dilate2);"/>
<text x="375" y="170" style="text-anchor: middle;">Dilate 2</text>

Figure 10-23. Result of using feMorphology

 164

10.12 The feConvolveMatrix Element

The <feConvolveMatrix> element lets you calculate a pixel's new value in terms of the
values of its neighboring pixels. This filter lets you do effects such as blurring,
sharpening, embossing, and beveling. It works by combining a pixel with its neighboring
pixels to produce a resulting pixel value. Imagine a pixel P and its eight neighboring
pixels (the usual case that is used with this filter):

A B C
D P E
F G H

You then specify a list of nine numbers in the kernelMatrix attribute. These numbers
tell how much to multiply each pixel by. These products will be added up. The sum could
well come out to be greater than one (if all the factors are positive, for example), so, to
even the intensity, the result is divided by the total of the factors. Let's say you specify
these nine numbers:

<feConvolveMatrix kernelMatrix="
 0 1 2
 3 4 5
 6 7 8"/>

The new value of pixel P will then be:

P' = ((0*A) + (1*B) + (2*C) +
 (3*D) + (4*P) + (5*E) +
 (6*F) + (7*G) + (8*H)) / (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8)

Example 10-13 achieves the embossing effect shown in Figure 10-24 by taking the upper
left neighbor minus the lower right neighbor of each pixel.

Example 10-13. Embossing with feConvolveMatrix

<defs>
<filter id="emboss">
 <feConvolveMatrix
 kernelMatrix="
 1 0 0

 165

 0 0 0
 0 0 -1"/>
</filter>

<g id="flower">
 <!-- flower graphic goes here -->
</g>
</defs>

<use xlink:href="#flower" style="filter: url(#emboss);"/>

Figure 10-24. Result of using feConvolveMatrix

Although the default matrix size is three columns by three rows, you can specify any size
you want with the order attribute. If you specify order="4", then the matrix will require
sixteen numbers (4 by 4) in the kernelMatrix attribute. A matrix with three columns and
two rows would be specified by order="3 2" and would require six numbers. The larger
your kernel matrix, the more computation is required to produce the result.

For a pixel in the middle of a graphic, the neighbors are easy to identify. What do you do
with the pixels on the edges of the graphic? Who are their neighbors? This decision is
made by the setting that you give the edgeMode attribute. If you set its value to be
duplicate, then <feConvolveMatrix> duplicates the edge values in the required
direction to produce a neighbor. The value wrap wraps around to the opposite side to find
a neighbor. For example, the neighbor above a pixel at the top is the pixel at the bottom,
and the neighbor to the left of a pixel at the left edge is the corresponding pixel at the
right edge. The value of none will provide a transparent black pixel (red, green, blue, and
alpha values of zero) for any missing neighbors.

The default behavior of <feConvolveMatrix> is to apply the calculations to all the
channels, including alpha. If you want to apply calculations only to the red, green, and
blue values, specify preserveAlpha as true (the default value is false).

You may also add a fixed offset to the result of each calculation by specifying a value for
the bias attribute, although this particular feature does not work in the current 1.0 release
of Batik. Some sample convolve effects (which were not designed specifically for SVG)
are available at http://www.nebulus.org/tutorials/2d/pictpub/udf/.

10.13 The feDisplacementMap Element

http://www.nebulus.org/tutorials/2d/pictpub/udf/

 166

This fascinating filter uses the color values of its second input to decide how far to move
the pixels in the first input. You specify which color channel should be used to affect the
x-coordinate of a pixel with the xChannelSelector attribute; the yChannelSelector
attribute specifies the color channel used to affect the y-coordinate. The legal values for
these selectors are "R", "G", "B", and "A" (for the alpha channel). You must specify how
far to displace pixels; the scale attribute gives the appropriate scaling factor. If you don't
specify this attribute, the filter won't do anything.

Example 10-14 creates a gradient rectangle as the second input. The displacement factor
will be set to ten, the red channel will be used as an x offset, and the green channel will
be used as a y offset. Figure 10-25 shows the result of applying this displacement to the
flower.

Example 10-14. Using a gradient as a displacement map

<defs>
<linearGradient id="gradient">
 <stop offset="0" style="stop-color: #ff0000;" />
 <stop offset="0.5" style="stop-color: #00ff00;"/>
 <stop offset="1" style="stop-color: #000000;"/>
</linearGradient>

<rect id="rectangle" x="0" y="0" width="100" height="200"
 style="fill: url(#gradient);"/>

<filter id="displace">
 <feImage xlink:href="#rectangle" result="grad"/>

 <feDisplacementMap
 scale="10"
 xChannelSelector="R"
 yChannelSelector="G"
 in="SourceGraphic" in2="grad"/>
</filter>

<g id="flower">
 <!-- flower graphic goes here -->
</g>
</defs>

<use xlink:href="#flower" style="filter: url(#displace);"/>

Figure 10-25. Result of using feDisplacementMap

 167

It's possible to use the same graphic for both inputs. This means that a graphic's
displacement is controlled by its own coloration. This effect, as written in Example 10-15
and displayed in Figure 10-26, can be quite eccentric.

Example 10-15. Using a Graphic as Its Own Displacement Map

<defs>
<filter id="self-displace">
 <feDisplacementMap
 scale="10"
 xChannelSelector="R"
 yChannelSelector="G"
 in="SourceGraphic" in2="SourceGraphic"/>
</filter>

<g id="flower">
 <!-- flower graphic goes here -->
</g>
</defs>

<use xlink:href="#flower" style="filter: url(#self-displace);"/>

Figure 10-26. Same graphic used as both inputs to feDisplacementMap

10.14 The feTurbulence Element

The <feTurbulence> elements lets you produce artificial textures for effects like marble,
clouds, etc. by using equations developed by Ken Perlin. An excellent summary is
available at http://freespace.virgin.net/hugo.elias/models/m_perlin.htm. You specify these
attributes:

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

 168

type

One of turbulence or fractalNoise. Fractal noise is smoother in appearance.

baseFrequency

The larger the number you give as the value for this attribute, the more quickly
colors change in the result. This number must be greater than zero and should be
less than one. You may also give two numbers for this attribute; the first will be
the frequency in the x direction and the second will be the frequency in the y
direction.

numOctaves

This is the number of noise functions that should be added together when
generating the final result. The larger this number, the more fine-grained the
texture. The default value is one.

seed

The starting value for the random number generator that this filter uses. The
default value is zero; change it to get some variety in the result.

Figure 10-27 is a screenshot of an SVG file that shows various values of the first three of
these attributes.

Figure 10-27. Various values of feTurbulence attributes

10.15 Filter Reference Summary

The <filter> element contains a series of filter primitives, each of which takes one or
more inputs and provides a single result for use with other filters. The result of the last

 169

filter in the series is rendered into the final graphic. You specify the dimensions of the
canvas to which the filter applies with the x, y, width, and height attributes.

Table 10-1 presents a filter reference summary. Each of the filter primitive elements has
an in attribute that gives the source for the primitive, and may also specify an x, y, width,
and height. Default attributes are in boldface.

Table 10-1. Filter reference summary
Element Attributes

<feBlend>

in2="second source"

mode="normal " | "multiply" | "screen" | "darken" |
"lighten"

<feColorMatrix>

type="matrix" | "saturate" | "hueRotate" |
"luminanceToAlpha"

values="matrix values" | " saturation value
(0-1)" | "rotate degrees"

<feComponentTransfer> container for <feFuncR>, <feFuncG>, <feFuncB>, and <feFuncA>
elements.

<feFuncX>

type="identity" | "table" | "discrete" | "linear" |
"gamma"

tableValues="intervals for table, steps for
discrete"

slope="linear slope"

intercept="linear intercept"

amplitude="gamma amplitude"

exponent="gamma exponent"

offset="gamma offset"

<feComposite>

in2="second source"

operator="over" | "in" | "out" | "atop" | "xor" |
"arithmetic"

<feComposite>
(continued)

The following attributes are used with arithmetic:

k1="factor for in1*in2"

k2="factor for in1"

k3="factor for in2"

 170

k4="additive offset"

<feConvolveMatrix>

order="columns rows" (default 3 by 3)

kernel="values"

bias="offset value"

<feDiffuseLighting>

Container for a light source element.

surfaceScale="height" (default 1)

diffuseConstant="factor" (must be non-negative; default 1)

<feDisplacementMap>

scale="displacement factor" (default 0)

xChannelSelector="R" | "G" | "B" | "A"

yChannelSelector="R" | "G" | "B" | "A"

in2="second input"

<feFlood>
flood-fill-color="color specification"

flood-fill-opacity="value (0-1)"
<feGaussianBlur> stdDeviation="blur spread" (larger is blurrier; default 0)
<feImage> xlink:href="image source"
<feMerge> container for <feMergeNode> elements
<feMergeNode> in="intermediate result

<feMorphology>

operator="erode" | "dilate"

radius="x-radius y-radius"

radius="radius"

<feOffset>
dx="x offset" (default 0)

dy="y offset" (default 0)

<feSpecularLighting>

Container for a light source element.

surfaceScale="height" (default 1)

specularConstant="factor" (must be non-negative; default 1)

specularExponent="exponent" (range 1-128; default 1)
<feTile> tiles the in layer

<feTurbulence>

type="turbulence" | "fractalNoise"

baseFrequency="x-frequency y-frequency"

 171

baseFrequency="frequency"

numOctaves="integer"

seed="number"

<feDistantLight>
azimuth="degrees" (default 0)

elevation="degrees" (default 0)

<fePointLight>

x="coordinate" (default 0)

y="coordinate" (default 0)

z="coordinate" (default 0)

<feSpotLight>

x="coordinate" (default 0)

y="coordinate" (default 0)

z="coordinate" (default 0)

pointsAtX="coordinate" (default 0)

pointsAtY="coordinate" (default 0)

pointsAtZ="coordinate" (default 0)

specularConstant="focus control" (default 1)

limitingConeAngle="degrees"

 172

Chapter 11. Animating and Scripting SVG

Up to this point we have produced static images; once constructed, they never change. In
this chapter, we will examine two methods of making graphic images move. The first
method, animation, is movement that is controlled by you, the author. The second method,
scripting, lets the person viewing the graphic interact with and modify the image.

In Chapter 10 we suggested that filters should be used as a means to enhance a graphic's
message, not as an end in themselves. This suggestion is even more crucial with
animation. Drunk with the power of animation, you will be tempted to turn your every
graphic into an all-dancing, all-singing, Broadway spectacular. As long as your goal is
experimentation, this is fine. If your goal is to convey a message, however, nothing is
worse than gratuitous use or overuse of animation. Let me state this clearly: nobody
except the company CEO is interested in repeated viewing of a spinning, flashing,
color-changing, strobe-lit version of the company logo.

In this chapter, our message is the animation, so most of our examples will be remarkably
free of any content. We will, of course, avoid gratuitous and overwrought animation as
much as possible.

11.1 Animation Basics

The animation features of SVG are based on the World Wide Web Consortium's
Synchronized Multimedia Integration Language Level 2 (SMIL2) specification
http://www.w3.org/TR/smil20/. In this system, you specify the starting and ending values
of the attribute, color, motion, or transformation that you wish to animate; the time at
which the animation should begin; and the duration of the animation. Example 11-1
shows this in action.

Example 11-1. The incredible shrinking rectangle

<rect x="10" y="10" width="200" height="20" stroke="black" fill="none">
[1]
 <animate [2]
 attributeName="width" [3]
 attributeType="XML" [4]
 from="200" to="20" [5]
 begin="0s" dur="5s" [6]
 fill="freeze" /> [7]
</rect> [8]

[1] A <rect> element without the ending />. The animation will be contained within the
element.

[2] Begin specification of animation

http://www.w3.org/TR/smil20/

 173

[3] Specify the attribute whose value should change over time.

[4] Width is an XML attribute in the <rect> element. The other common value of
attributeType is CSS, indicating that the property we want to change is a CSS property.
If you leave this off, the default value of auto is used; it searches through CSS properties
first and then XML attributes.

[5] The starting and ending values for the attribute. In this example, the starting value is
200 and the ending value is 20.[1]

[1] There is also a by attribute, which you may use instead of to; it is an offset that is
added to the starting from value; the result is the ending value.

[6] The beginning and duration times for the animation. In this example, we measure
time in seconds, specified by the s after the number. For more details, see Section 11.2.

[7] After the five-second duration, keep the attribute at its end value. If you remove this
line, the attribute will return to its original value of 200 after the five-second animation
has finished. This is the SMIL fill attribute, which tells the animation engine how to fill
up the remaining time. Don't confuse it with SVG's fill attribute, which tells SVG how
to paint an object.

[8] We have to close the <rect> element, since it is now a container element.

Figure 11-1 and Figure 11-2 show the beginning and ending stages of the animation.
They can't do justice to the actual effect, so we strongly recommend that you download
the Adobe SVG Viewer plugin and try the example. Type it into a file, enclosed in the
appropriate <?xml?> and <svg> tags, and open it within your browser.

Figure 11-1. Beginning of animation

Figure 11-2. Ending of animation

Let's move on to a more ambitious example. In Example 11-2 we'll start with a 20-by-20
green square that will grow to 250-by-200 over the space of 8 seconds. For the first three
seconds, the opacity of the green will increase, then decrease for the next three seconds.
Note that fill-opacity is referred to with attributeType="CSS" since it was set in a
style.

Example 11-2. Multiple animations on a single object

<rect x="10" y="10" width="20" height="20"

 174

 style="stroke: black; fill: green; style: fill-opacity: 0.25;">
<animate attributeName="width" attributeType="XML"
 from="20" to="250" begin="0s" dur="8s" fill="freeze"/>
<animate attributeName="height" attributeType="XML"
 from="20" to="200" begin="0s" dur="8s" fill="freeze"/>
<animate attributeName="fill-opacity" attributeType="CSS"
 from="0.25" to="1" begin="0s" dur="3s" fill="freeze"/>
<animate attributeName="fill-opacity" attributeType="CSS"
 from="1" to="0.25" begin="3s" dur="3s" fill="freeze"/>
</rect>

Our last simple example, Example 11-3, animates a square and a circle. The square will
expand from 20-by-20 to 120-by-120 over the space of eight seconds. Two seconds after
the beginning of the animation, the circle's radius will start expanding from 20 to 50 over
the space of four seconds. Figure 11-3 shows a combined screenshot of the animation at
four times: zero seconds, when the animation begins; two seconds, when the circle starts
to grow; six seconds, when the circle finishes growing; and eight seconds, when the
animation is finished.

Example 11-3. Simple animation of multiple objects

<rect x="10" y="10" width="20" height="20"
 style="stroke: black; fill: #cfc;">
 <animate attributeName="width" attributeType="XML"
 begin="0s" dur="8s" from="20" to="120" fill="freeze"/>
 <animate attributeName="height" attributeType="XML"
 begin="0s" dur="8s" from="20" to="120" fill="freeze"/>
</rect>

<circle cx="70" cy="70" r="20"
 style="fill: #ccf; stroke: black;">
 <animate attributeName="r" attributeType="XML"
 begin="2s" dur="4s" from="20" to="50" fill="freeze"/>
</circle>

Figure 11-3. Stages of multi-object animation

11.2 How Time Is Measured

 175

SVG's animation clock starts ticking when the SVG has finished loading, and it stops
ticking when the user leaves the page. You may specify a beginning or duration for a
particular animation segment as a numeric value in one of these ways:

• A full clock value in hours, minutes, and seconds (1:20:23).
• A partial clock value in minutes and seconds (2:15).
• A time value followed by a "metric," which is one of h (hours), min (minutes), s

(seconds), or ms (milliseconds), for example dur="3.5s" begin="1min". If no
metric is specified, the default is seconds. You may not put any whitespace
between the value and the metric.

You may also tie an animation's beginning time to the beginning or end of another
animation. Example 11-4 shows two circles; the second one will start expanding as soon
as the first one has stopped shrinking. Figure 11-4 shows the important stages of the
animation.

Example 11-4. Synchronization of animations

<circle cx="60" cy="60" r="30" style="fill: #f9f; stroke: gray;">
 <animate id="c1" attributeName="r" attributeType="XML"
 begin="0s" dur="4s" from="30" to="10" fill="freeze"/>
</circle>

<circle cx="120" cy="60" r="10" style="fill: #9f9; stroke: gray;">
 <animate attributeName="r" attributeType="XML"
 begin="c1.end" dur="4s" from="10" to="30" fill="freeze"/>
</circle>

Figure 11-4. Stages of synchronized animations

It is also possible to add an offset to this synchronization. To make an animation start two
seconds after another animation, you would use a construction of the form
begin="otherAnim.end+2s". (You may add whitespace around the plus sign.) The
offset must be positive; to make an animation's start point begin="otherAnim.end-2s"
would require the computer to look into the future, and there is no such thing as Psychic
Vector Graphics. In Example 11-5, the second circle begins to grow one and a fourth
seconds after the first circle begins shrinking.

Example 11-5. Synchronization of animations with offsets

<circle cx="60" cy="60" r="30" style="fill: #f9f; stroke: gray;">

 176

 <animate id="c1" attributeName="r" attributeType="XML"
 begin="0s" dur="4s" from="30" to="10" fill="freeze"/>
</circle>

<circle cx="120" cy="60" r="10" style="fill: #9f9; stroke: gray;">
 <animate attributeName="r" attributeType="XML"
 begin="c1.begin+1.25s" dur="4s" from="10" to="30" fill="freeze"/>
</circle>

Now that we know about synchronizing animations, we can introduce the end attribute,
which sets an end time for an animation. This is not a substitute for the dur attribute! The
following animation will start six seconds after the page loads, and will last for twelve
seconds or until an animation named otherAnim ends; whichever comes first.

<animate attributeName="width" attributeType="XML"
 begin="6s" dur="12s" end="otherAnim.end"
 from="10" to="100" fill="freeze"/>

You can, of course, set the value of end to a number; this is useful for halting an
animation partway through so that you can see if everything is in the right place. This is
how we were able to create Figure 11-3. The following animation starts at six seconds,
and should last for twelve seconds, but is halted at nine seconds.

<animate attributeName="width" attributeType="XML"
 begin="6s" dur="12s" end="9s"
 from="10" to="100" fill="freeze"/>

11.3 Repeated Action

The animations we've produced so far occur exactly once; we set fill to freeze to keep
the final stage of the animation. If we want to have the object return to its pre-animation
state, we omit the attribute. (This is equivalent to setting fill to the default value of
remove.)

Two other attributes allow you to repeat an animation. The first of them, repeatCount, is
set to an integer value telling how many times you want a particular animation to repeat.
The second, repeatDur, is set to a time telling how long the repetition should last. If you
want an animation to repeat until the user leaves the page, set either repeatCount or
repeatDur to the value indefinite. The animation in Example 11-6 shows two circles.
The upper circle moves from left to right in two repetitions of five seconds each. The
second circle moves from right to left for a total of eight seconds.

Example 11-6. Example of repeated animation

<circle cx="60" cy="60" r="30" style="fill: none; stroke: red;">
 <animate attributeName="cx" attributeType="XML"
 begin="0s" dur="5s" repeatCount="2"
 from="60" to="260" fill="freeze"/>
</circle>

 177

<circle cx="260" cy="130" r="30" style="fill: #ccf; stroke: black;">
 <animate attributeName="cx" attributeType="XML"
 begin="0s" dur="5s" repeatDur="8s"
 from="260" to="60" fill="freeze"/>
</circle>

Just as it was possible to synchronize an animation with the beginning or ending of
another animation, we can tie the start of one animation to the start of a specific repetition
of another animation. You give the first animation an id, then set the begin of the second
animation to id.repeat(count), where count is a number beginning at zero for the first
repetition. In Example 11-7, we have an upper circle moving from left to right three times,
requiring five seconds for each repetition. The lower square will go right to left only once,
and will not begin until halfway through the second repetition. (We use an offset to
achieve this effect.)

Example 11-7. Synchronizing an animation with a repetition

<circle cx="60" cy="60" r="30"
 style="fill: none; stroke: red;">
 <animate id="circle-anim" attributeName="cx" attributeType="XML"
 begin="0s" dur="5s" repeatCount="3"
 from="60" to="260" fill="freeze"/>
</circle>

<rect x="230" y="100" width="60" height="60"
 style="fill: #ccf; stroke: black;">
 <animate attributeName="x" attributeType="XML"
 begin="circle-anim.repeat(1) + 2.5s" dur="5s"
 from="230" to="30" fill="freeze"/>
</rect>

11.4 The set Element

All of these animations have modified numeric values over time. You may want to set a
non-numeric attribute or property though. For example, you might want an initially
invisible text item to become visible at a certain time; there's no real need for both a from
and to. Thus, we have the convenient shorthand of the <set> element, which needs only
a to attribute and the proper timing information. Example 11-8 shrinks a circle down to
zero, then reveals text one-half second after the circle is gone.

Example 11-8. Example of set element

<circle cx="60" cy="60" r="30" style="fill: #ff9; stroke: gray;">
 <animate id="c1" attributeName="r" attributeType="XML"
 begin="0s" dur="4s" from="30" to="0" fill="freeze"/>
</circle>

<text text-anchor="middle" x="60" y="60" style="visibility: hidden;">
 <set attributeName="visibility" attributeType="CSS"
 to="visible" begin="4.5s" dur="1s" fill="freeze"/>
 All gone!

 178

</text>

11.5 The animateColor Element

The <animate> element doesn't work with colors, since a color is not represented as a
simple numeric value. Instead, the special <animateColor> element fills that purpose. Its
from and to attributes are color values, as described in Chapter 3, in Section 3.2.2. In
Example 11-9 we animate the fill and stroke colors of a circle, changing the fill from
light yellow to red and the gray outline to blue. Both animations start two seconds after
the page loads; this gives you time to see the original colors.

Example 11-9. Example of animateColor

<circle cx="60" cy="60" r="30"
 style="fill: #ff9; stroke: gray; stroke-width: 10;">
 <animateColor attributeName="fill"
 begin="2s" dur="4s" from="#ff9" to="red" fill="freeze"/>
 <animateColor attributeName="stroke"
 begin="2s" dur="4s" from="gray" to="blue" fill="freeze"/>
</circle>

If you have several animations for a particular object, one animation
can refer to the previous one with the keyword prev. We could
rewrite the preceding example as Example 11-10. Tying two related
animations together with prev lets you change them both by editing
just the first one.

Example 11-10. Use of the prev keyword in animation

<circle cx="60" cy="60" r="30"
 style="fill: #ff9; stroke: gray; stroke-width: 10;">
 <animateColor attributeName="fill"
 begin="2s" dur="4s" from="#ff9" to="red" fill="freeze"/>
 <animateColor attributeName="stroke"
 begin="prev.begin" dur="4s" from="gray" to="blue" fill="freeze"/>
</circle>

11.6 The animateTransform Element

Just as <animate> doesn't work with colors, it doesn't work with rotate, translate, scale,
or skew transformations either, since they're all "wrapped up" inside the transform
attribute. The <animateTransform> element comes to the rescue. You set its
attributeName to transform. The type attribute's value then specifies the
transformation whose values should change (one of translate, scale, rotate, skewX,
or skewY). The from and to values are specified as appropriate for the transform that
you're animating.

 179

Example 11-11 stretches a rectangle from normal scale to a scale of four times in the
horizontal direction and two times in the vertical direction. Note that we've centered the
rectangle around the origin so it doesn't move as it scales; we place it inside a <g> so it
can be translated to a more convenient location. Figure 11-5 shows the beginning and end
of the animation.

Example 11-11. Example of animateTransform

<g transform="translate(120,60)">
<rect x="-10" y="-10" width="20" height="20"
 style="fill: #ff9; stroke: black;">
 <animateTransform attributeType="XML"
 attributeName="transform" type="scale"
 from="1" to="4 2"
 begin="0s" dur="4s" fill="freeze"/>
 Stretch
</rect>
</g>

Figure 11-5. animateTransform -- before and after

If you intend to animate more than one transformation, you must use the additive
attribute. The default value of additive is replace, which replaces the specified
transformation in the object being animated. This won't work in a series of animations,
since the second animation would override the first one. By setting additive to sum,
SVG will accumulate the transformations. Example 11-12 stretches and rotates the
rectangle; the before and after pictures are in Figure 11-6.

Example 11-12. Example of multiple animateTransform elements

<rect x="-10" y="-10" width="20" height="20"
 style="fill: #ff9; stroke: black;">
 <animateTransform attributeName="transform" attributeType="XML"
 type="scale" from="1" to="4 2"
 additive="sum" begin="0s" dur="4s" fill="freeze"/>
 <animateTransform attributeName="transform" attributeType="XML"
 type="rotate" from="0" to="45"
 additive="sum" begin="0s" dur="4s" fill="freeze"/>
</rect>

Figure 11-6. Multiple animateTransforms -- before and after

 180

11.7 The animateMotion Element

By using translate with the <animateTransform> element, you can cause an object to
animate along a straight-line path. The <animateMotion> element lets you do this as well;
additionally, it allows you to animate an object along an arbitrary path.

If you insist on using <animateMotion> for straight-line motion, you simply set the from
and to attributes, assigning them each a pair of (x, y) coordinates. Example 11-13 moves
a grouped circle and rectangle from (0,0) to (60,30).

Example 11-13. Animation along a linear path

<g>
 <rect x="0" y="0" width="30" height="30" style="fill: #ccc;"/>
 <circle cx="30" cy="30" r="15" style="fill: #cfc; stroke: green;"/>
 <animateMotion from="0,0" to="60,30" dur="4s" fill="freeze"/>
</g>

If you want a more complex path to follow, use the path attribute instead; its value is in
the same format as the d attribute in the <path> element. Example 11-14, adapted from
the SVG specification, animates a triangle along a cubic Bézier curve path.

Example 11-14. Animation along a complex path

<!-- show the path along which the triangle will move -->
<path d="M50,125 C 100,25 150,225, 200, 125"
 style="fill: none; stroke: blue;"/>

<!-- Triangle to be moved along the motion path.
 It is defined with an upright orientation with the base of
 the triangle centered horizontally just above the origin. -->
<path d="M-10,-3 L10,-3 L0,-25z" style="fill: yellow; stroke: red;">
 <animateMotion
 path="M50,125 C 100,25 150,225, 200, 125"
 dur="6s" fill="freeze"/>
</path>

As you can see in Figure 11-7, the triangle stays upright throughout its entire path.

Figure 11-7. animateMotion along a complex path

 181

If you would prefer that the object tilt so its x-axis is always parallel to the slope of the
path, just add the rotate attribute with a value of auto to the <animateMotion> element.
Example 11-15 shows the SVG and Figure 11-8 shows screenshots taken at various
stages of the animation.

Example 11-15. Animation along a complex path with auto-rotation

<!-- show the path along which the triangle will move -->
<path d="M50,125 C 100,25 150,225, 200, 125"
 style="fill: none; stroke: blue;"/>

<!-- Triangle to be moved along the motion path.
 It is defined with an upright orientation with the base of
 the triangle centered horizontally just above the origin. -->
<path d="M-10,-3 L10,-3 L0,-25z" style="fill: yellow; stroke: red;" >
 <animateMotion
 path="M50,125 C 100,25 150,225, 200, 125"
 rotate="auto"
 dur="6s" fill="freeze"/>
</path>

Figure 11-8. animateMotion along a complex path with auto-rotation

Put simply, when you leave off the rotate attribute, you get the default value of zero,
and the object acts like a hot-air balloon floating along the path. If you set rotate to
auto, the object acts like a car on a roller coaster, tilting up and down as the path does.

You can also set rotate to a numeric value, which will set the rotation of the object
throughout the animation. Thus, if you wanted an object rotated 45 degrees no matter
what direction the path took, you'd use rotate="45".

 182

In Example 11-15, we drew the path in blue so that it was visible, and then duplicated the
path in the <animateMotion> element. You can avoid this duplication by adding an
<mpath> element within the <animateMotion> element. The <mpath> will contain an
xlink:href attribute that references the path you want to use. This also comes in handy
when you have one path you wish to use to animate multiple objects. Here's the
preceding example, rewritten as Example 11-16, using <mpath>.

Example 11-16. Motion along a complex path using mpath

<path id="cubicCurve" d="M50,125 C 100,25 150,225, 200, 125"
 style="fill: none; stroke: blue;"/>

<path d="M-10,-3 L10,-3 L0,-25z" style="fill: yellow; stroke: red;" >
 <animateMotion dur="6s" rotate="auto" fill="freeze">
 <mpath xlink:href="#cubicCurve"/>
 </animateMotion>
</path>

11.8 Using Links in SVG

To this point, you, the author of the SVG document, have made all the decisions about a
graphic. You decide what a static image should look like, and if there are any animations,
you decide when they start and stop. In this section, we will see how to hand some of that
control over to the person who is viewing your document.

The easiest sort of interactivity to provide is linking, accomplished with the <a> element.
By enclosing a graphic in this element, it becomes active; when clicked, you go to the
URL specified in the xlink:href attribute. You can link to another SVG file or,
depending upon your environment, a web page. In Example 11-17, clicking the word
"Cat" will link to an SVG drawing of a cat; clicking the red, green, and blue shapes will
link to the World Wide Web Consortium's SVG page. All the items within the second
link are individually linked to the same destination, not the entire bounding box. When
you test this example and move the cursor between the shapes, you will see that those
areas are not linked.

Example 11-17. Links in SVG

<a xlink:href="cat.svg">
 <text x="100" y="30" style="font-size: 12pt;">Cat</text>

<a xlink:href="http://www.w3.org/SVG/">
 <circle cx="50" cy="70" r="20" style="fill: red;"/>
 <rect x="75" y="50" width="40" height="40" style="fill: green;"/>
 <path d="M120 90, 140 50, 160 90 Z" style="fill: blue;"/>

 183

It's worth noting that xlink:href has a namespace prefix; though this attribute is
duplicated in the SVG specification, it belongs to the XLink specification. The SVG
DTD handles the namespace declaration.

11.9 Scripting SVG

The next step up from linking — and it's a big step — is scripting. You can write a
program in ECMA Script (the European Computer Manufacturer's Association standard
version of what is commonly called JavaScript) to interact with an SVG graphic.
Interaction occurs when graphic objects respond to events.

Objects can respond to mouse events associated with clicking the mouse button: click,
mousedown, and mouseup;[2] events associated with moving the mouse: mouseover (the
mouse pointer is within the object), mouseout (the mouse pointer leaves the object), and
mousemove; events associated with an object's status: load (the object has been fully
parsed and is ready to render); and the non-standardized events associated with pressing
keys: keydown and keyup.

[2] A click event is defined as a mousedown followed by a mouseup; all three
are different events, and cannot be used synonymously.

The names listed here are the names of the events. We'll be using
attributes to specify the functions which should handle the events.
These event handler attributes begin with the word on. Thus,
onclick is an attribute whose value specifies a function that handles
a click event.

To allow an object to respond to an event, you add an oneventName attribute to the
element in question. The value of the attribute will be an ECMA Script statement, usually
a function call. This function usually takes the reserved word evt as one of its parameters.
evt has properties and methods that describe the event that has occurred. The three
methods you will use most often are getTarget(), which returns a reference to the
graphic object that is responding to this event, and getClientX() and getClientY(),
which return the x- and y- coordinates of the mouse when the event occurred. A value of
(0,0) indicates the upper left corner of the SVG viewport. These functions return the
position in the viewer window regardless of any zoom or pan that the user may have
done.

11.9.1 Changing Attributes of a Single Object

The simplest type of event handling is where an event occurring on object X modifies
some attribute of that object. Let's look at Example 11-18, which makes a circle respond
to the mouseover event by making the circle's radius larger. The circle will respond to the
mouseout event by making the radius smaller.

 184

Example 11-18. Basic scripting -- changing a single object

<script type="text/ecmascript"> [1]
<![CDATA[[2]
function enlarge_circle(evt) [3]
{
 var circle = evt.getTarget(); [4]

 circle.setAttribute("r", 50); [5]
}

function shrink_circle(evt) [6]
{
 var circle = evt.getTarget();

 circle.setAttribute("r", 25);
}
//]]> [7]
</script>

<circle cx="150" cy="100" r="25" fill="red" [8]
 onmouseover="enlarge_circle(evt)" [9]
 onmouseout="shrink_circle(evt)"/>

<text x="150" y="175" style="text-anchor: middle;">
 Mouse over the circle to change its size.
</text>

[1] The beginning <script> tag indicates that you are preparing to leave the world of
SVG/XML and enter the ECMA Script environment. The type attribute tells which
scripting language you are using.

[2] In XML, the less than sign introduces a tag, and the ampersand symbol is used for
escaping characters (see Appendix A in Section A.2.5). Since ECMA Script isn't XML,
we want to turn off this special behavior. The <![CDATA[tells XML to stop treating the
less than and ampersand symbols as special; they become ordinary content, which is the
way ECMA Script likes it. This completes our exit from the SVG/XML world and
immerses us in the ECMA Script environment.

[3] The first function, enlarge_circle, takes one parameter; the event that triggered the
call.

[4] We use the evt.getTarget to return a reference to the graphic object that triggered the
event, and store it in variable circle

[5] To change an attribute of a graphic object, call the object's setAttribute function with
two parameters: the name of the attribute you wish to change, and its new value.
setAttribute is a void function; it returns no value. There is a corresponding getAttribute
function which takes as its parameter the name of the attribute; it returns a string
representation of the attribute's current value. These functions are part of the DOM, or

 185

Document Object Model. The DOM is a standard API for accessing, modifying, and
rearranging the elements in an XML document.

[6] This function, patterned exactly like the previous one, will set the r attribute of the
event's target to 25.

[7] The]]> ends the <![CDATA[on the second line of the script. It returns the less than
and ampersand to their special XML status, just in time for </script> on the next line,
which leaves ECMA Script and returns you to the SVG/XML world. The leading slashes
on line 16 introduce an ECMA Script comment, ensuring that the remainder of the line is
not interpreted as part of the script. (This is not necessary with version 2.0 Adobe plugin,
but other XML applications may require the slashes.)

[8] Since we will be setting an attribute to change the color, we specify the fill color with
a presentation attribute. We can't use style, because its setting overrides the value of a
presentation attribute.

[9] Here is our bridge between the SVG world and the ECMA Script world. The
onmouseover event handler will call enlarge_circle, and the onmouseout event handler
will call shrink_circle. In this context, evt is provided by the SVG viewer environment.

11.9.2 Changing Attributes of Multiple Objects

Sometimes you will want an event that occurs on object A to affect attributes of both
object A and some other object B. Example 11-19 shows possibly the world's crudest
example of SVGcommerce. Figure 11-9 shows a T-shirt whose size changes as the user
clicks each labeled button. The currently selected size button is highlighted in light
yellow.

Figure 11-9. Screenshots of different selections

Example 11-19. Changing multiple objects in a script

<svg width="400" height="250" viewBox="0 0 400 250"

 186

 onload="init(evt)"> [1]

<script type="text/ecmascript">
<![CDATA[

var scaleChoice = 1; [2]
var scaleFactor = new Array(1.25, 1.5, 1.75);

function init(evt)
{
 transformShirt();
}

function setScale(n)
{
 obj = svgDocument.getElementById("scale" + scaleChoice); [3]
 obj.setAttribute("fill", "white");
 scaleChoice = n;
 obj = svgDocument.getElementById("scale" + scaleChoice);
 obj.setAttribute("fill", "#ffc");
 transformShirt();
}

function transformShirt()
{
 var obj = svgDocument.getElementById("shirt"); [4]
 obj.setAttribute("transform",
 "scale(" + scaleFactor[scaleChoice] + ")"
);
 obj.setAttribute("stroke-width",
 1 / scaleFactor[scaleChoice]);
}

//]]>
</script>

<defs>
 <path id="shirt" [5]
 d="M -6 -30, -32 -19, -25.5 -13, -22 -14, -22 30, 23 30,
 23 -14, 26.5 -13, 33 -19, 7 -30
 A 6.5 6 0 0 1 -6 -30"
 fill="white" stroke="black"/> [6]
</defs>

<use xlink:href="#shirt" x="150" y="150"/>

<g onclick="setScale(0)"> [7]
<rect id="scale0" x="100" y="10" width="30" height="30"
 fill="white" stroke="black"/>
<text x="115" y="30" text-anchor="middle">S</text>
</g>

<g onclick="setScale(1)">
<rect id="scale1" x="140" y="10" width="30" height="30"
 fill="#ffc" stroke="black"/> [8]
<text x="155" y="30" text-anchor="middle">M</text>
</g>

 187

<g onclick="setScale(2)">
<rect id="scale2" x="180" y="10" width="30" height="30"
 fill="white" stroke="black"/>
<text x="195" y="30" text-anchor="middle">L</text>
</g>

</svg>

[1] As soon as the document finishes loading, the load event occurs, and the onload
handler will call the init function, passing it the event information. Most scripts will use
this event handler to make sure that all their variables are set up properly.

[2] This script works by keeping track of which button (S, M, or L) has been chosen, and
indexing into the corresponding entry in the scaleFactor array. The default is index
number one, medium.

[3] svgDocument is a reference to the entire SVG document, and we'll be using its
properties and methods to access the parts of the document that we need. This entire
script hinges on the use of the document's getElementById function. getElementById
takes a string as its parameter, and returns the object which has that string as its id. The
setScale function finds the currently chosen button and turns its fill color to white. It then
updates the current choice, and changes that button's fill color to light yellow. Finally, it
updates the image of the shirt.

[4] In addition, the transformShirt function calls on the document's getElementById to
access the graphic object with id of shirt, and changes its transform attribute to the
proper scale. It also sets the stroke-width to the reciprocal of the scaling factor so the
stroke width of the shirt's border always equals one.

[5] Here's the shirt; it's centered around (0,0) so it will appear to expand around its center.

[6] Since we're changing the attributes in the script, we have to use presentation attributes
here instead of styles. (If we used styles, they would override any attribute settings.)

[7] Each of the buttons will call the setScale function when clicked; the parameter gives
the index for the scaling factor, and each button's <rect> element is named with the
corresponding number at the end.

[8] The default button has a background set to light yellow when the document first
loads.

11.9.3 Dragging Objects

Let us expand this example by adding "sliders" that can be dragged to set the color of the
shirt, as shown in Figure 11-10.

 188

Figure 11-10. Screenshot of color sliders

We'll need a few more global variables in the script. The first of these, slideChoice,
tells which slider (0, 1, or 2) is currently being dragged; its initial value is -1, meaning
that no slider is active. We'll also use an array called rgb to hold the percent of red, green,
and blue; the initial values are all 100, since the shirt is initially white.

var slideChoice = -1;
var rgb = new Array(100, 100, 100);

We now draw the sliders themselves. The color bar and the slide indicator are drawn on a
white background, and they are grouped together. The id attribute goes on the indicator
<line> element, since its y-coordinate will be changing. The event handlers will be
attached to the enclosing <g> element. The group will then capture the mouse events that
happen on any of its child elements. (This is why we drew the white background; the
mouse will still track even if you drag outside the colored bar.)

<g onmousedown="startColorDrag(0)"
 onmouseup="endColorDrag()"
 onmousemove="doColorDrag(evt,0)"
 transform="translate(230, 10)">
 <rect x="-10" y="-5" width="40" height="110" style="fill: white;"/>
 <rect x="5" y="0" width="10" height="100" style="fill: red;"/>
 <line id="slide0" x1="0" y1="0" x2="20" y2="0"
 style="stroke: gray; stroke-width: 2;"/>
</g>

<g onmousedown="startColorDrag(1)"
 onmouseup="endColorDrag()"
 onmousemove="doColorDrag(evt,1)"
 transform="translate(280, 10)">
 <rect x="-10" y="-5" width="40" height="110" style="fill: white;"/>
 <rect x="5" y="0" width="10" height="100" style="fill: green;"/>
 <line id="slide1" x1="0" y1="0" x2="20" y2="0"
 style="stroke: gray; stroke-width: 2;"/>
</g>

<g onmousedown="startColorDrag(2)"
 onmouseup="endColorDrag()"
 onmousemove="doColorDrag(evt,2)"

 189

 transform="translate(330, 10)">
 <rect x="-10" y="-5" width="40" height="110" style="fill: white;"/>
 <rect x="5" y="0" width="10" height="100" style="fill: blue;"/>
 <line id="slide2" x1="0" y1="0" x2="20" y2="0"
 style="stroke: gray; stroke-width: 2;"/>
</g>

The corresponding functions are as follows:

/*
 * Stop dragging the current slider (if any)
 * and set the current slider to the one specified.
 * (0 = red, 1 = green, 2 = blue)
 */
function startColorDrag(which)
{
 endColorDrag();
 slideChoice = which;
}

/*
 * Set slider choice to -1, indicating that no
 * slider is begin dragged.
 */
function endColorDrag()
{
 slideChoice = -1;
}

/*
 * Move the specified slider in response to the
 * mousemove event.
 */
function doColorDrag(evt, which)
{
 /*
 * If no slider is active, or the event is on a
 * slider other than the active one, do nothing
 */
 if (slideChoice < 0 || slideChoice != which)
 {
 return;
 }

 /*
 * Get the slider indicator line object, and the
 * mouse position (relative to the top of the color bar)
 */
 var obj = evt.getTarget();
 var pos = evt.getClientY() - 10;

 /* Clamp values to range 0..100 */
 if (pos < 0) { pos = 0; }
 if (pos > 100) { pos = 100; }

 /* Move the slider line to the new mouse position */

 190

 obj = svgDocument.getElementById("slide" + slideChoice);
 obj.setAttribute("y1", pos);
 obj.setAttribute("y2", pos);

 /* Calculate the new color value for this slider */
 rgb[slideChoice] = 100-pos;

 /*
 * Put together all the color values and
 * change the shirt's color accordingly.
 */
 var colorStr = "rgb(" + rgb[0] + "%," +
 rgb[1] + "%," + rgb[2] + "%)";
 obj = svgDocument.getElementById("shirt");
 obj.setAttribute("fill", colorStr);
}

There's only one minor point to take care of — the document will respond to an
onmouseup only if it occurs within the slider area. So, if you click the mouse on the red
color bar, drag the mouse down to the shirt, then release the mouse button, the document
will be unaware of it. When you then move the mouse over the red slider again, it will
still follow the mouse. To solve this problem, we insert a transparent rectangle that
completely covers the viewport, and have it respond to a mouseup event by calling
stopColorDrag. It will be the first, and therefore bottom-most object in the graphic. To
make the rectangle as unobtrusive as possible, it will be set to style="fill: none;".
"But wait," you interject. "A transparent area cannot respond to an event!" No, ordinarily
it can't, but we can set the pointer-events attribute to visible, meaning that an object
can respond to events as long as it is visible, no matter what its opacity.[3]

[3] Other values for pointer-events let you respond to an object's events in
the filled areas only (fill), outline areas only (stroke), or the fill and outline
together (painted), whether visible or not. Corresponding attribute values of
visibleFill, visibleStroke, and visiblePainted take the object's
visibility into account as well.

<rect x="0" y="0" width="400" height="300" style="fill: none;"
 onmouseup="endColorDrag()"
 pointer-events="visible"/>

11.9.4 Modifying Text

Although the sliders do give us the interactivity we want, it's hard to judge the
percentages by eye. We'd much prefer to show the percentages of red, green, and blue
below each slider, as depicted in Figure 11-11.

Figure 11-11. Screenshot of labeled color sliders

 191

Here's the SVG for the text underneath the red slider; the ones under the blue and green
slider have ids of pct1 and pct2. This element will go into a separate group from the
color bar and slider line so that it does not also become clickable.

<text id="pct0" x="10" y="120"
 style="font-size: 9pt; text-anchor: middle;">100%</text>

The number we want to change as we drag the mouse is not an attribute; it's the child of
the <text> element, so we can't use setAttribute to modify the text. Instead, we have to
create a new text node and insert it into the document tree in place of the old one. Here's
the code that we add at the end of the doColorDrag function. The first line retrieves the
<text> element. (The obj variable has already been declared, so we don't need to say
var again.) The second line asks the document to create a new text node whose content is
the percentage of the currently chosen slider. This text node needs to be placed in its
proper location within the document tree. That's what the third line does; it replaces the
first child of the text element with the newly created node.

 obj = svgDocument.getElementById("pct" + slideChoice);
 var newText = svgDocument.createTextNode(rgb[slideChoice] + "%");

obj.replaceChild(newText, obj.getFirstChild());

You can do much more than simply modify the text in a document.
You can remove elements, change their order, or even create new
elements with attributes and add them to the document under script
control. A list of the functions that manipulate the Document Object
Model are listed in Appendix E of the World Wide Web
Consortium's Document Object Model (DOM) Level 1 Specification
at http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001. A
detailed explanation of what the functions do can be found in the
DOM Reference chapter of XML in a Nutshell, by Elliotte Rusty
Harold and W. Scott Means. Although the examples in that book use
Java rather than ECMA Script, the explanations apply to both.

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001

 192

11.9.5 Interacting with an HTML Page

It is possible to embed an SVG graphic in a web page using the <embed> element. The
relevant attributes are the src for the graphic (a URL), the width and height of the
graphic, and the type attribute, which will be image/svg+xml. Once embedded, you can
add code to the SVG script and the HTML page's script so they can communicate with
one another.

Our goal in this example is to embed the preceding SVG example into a web page. This
web page will have a form that lets users type in the red, green, and blue percentages. The
values they enter will be reflected in the sliders. If they adjust the sliders, the values in
the form fields will be updated accordingly.

Here is the HTML document, with references to the (as yet unwritten) updateSVG
function. This function will take the input field number and the value currently within the
input field.

<html>
<head>
<title>SVG and HTML</title>
</head>

<body bgcolor="white">
<h2>SVG and HTML</h2>

<div align="center">
<embed src="shirt_interact.svg"
 width="400" height="250"
 type="image/svg+xml" />

<form name="rgbForm">
 Red: <input id="fld0" type="text" size="5" value="100"
 onchange="updateSVG(0, this.value)" />%

 Green: <input id="fld1" type="text" size="5" value="100"
 onchange="updateSVG(1, this.value)" />%

 Blue: <input id="fld2" type="text" size="5" value="100"
 onchange="updateSVG(2, this.value)" />%
</form>
</div>
</body>
</html>

Here is the script that goes into the head of the HTML document. Function updateSVG
checks to see that the input value is an integer (it will discard any decimal part), and, if so,
calls setShirtColor. setShirtColor is actually a reference to a function that exists in the
SVG document, and it will be the SVG document's responsibility to connect the function
to this HTML reference.

 193

Function updateHTMLField will be called from the SVG document's script. It will
receive a form field number and a percent value, which it will display in the appropriate
form field.

<script language="Javascript">
<!--
function updateSVG(which, amount)
{
 amount = parseInt(amount);
 if (!isNaN(amount))
 {
 window.setShirtColor(which, amount);
 }
}

function updateHTMLField(which, percent)
{
 document.rgbForm["fld" + which].value = percent;
}
// -->
</script>

Let us now turn our attention to the SVG document. The parent of the document is the
browser window in which it is embedded. We use the reserved word parent in the init
function to connect the SVG document's svgSetShirtColor function to the HTML page's
setShirtColor reference.

function init(evt)
{
 parent.setShirtColor = svgSetShirtColor;
 svgDocument = evt.getTarget().getOwnerDocument();
 transformShirt();
}

Since there are now effectively two ways to set the color values, we'll make things more
modular by rewriting doColorDrag to call the new svgSetShirtColor function:

function doColorDrag(evt, which)
{
 /*
 * If no slider is active, or the event is on a
 * slider other than the active one, do nothing
 */
 if (slideChoice < 0 || slideChoice != which)
 {
 return;
 }

 /*
 * Get the slider indicator line object, and the
 * mouse position (relative to the top of the color bar)
 */
 var obj = evt.getTarget();

 194

 var pos = evt.getClientY() - 10;

 /*
 * Since pos=0 is at the 100% point on the scale,
 * take 100-pos and send that to svgSetShirtColor
 * along with the slider number.
 */
 svgSetShirtColor(which, 100 - pos);
}

Function svgSetShirtColor will do what the remainder of doColorDrag used to do, with
two major differences. It uses the slider number that it is given as the first parameter, not
the global sliderChoice variable. The second parameter is now a percentage; in the
original version it was the y-position of the mouse. These are the sorts of changes you
have to make when you decide to modularize simple code that was written for an ad-hoc
example.

function svgSetShirtColor(which, percent)
{
 var obj;
 var colorStr;
 var newText;

 /* Clamp values to range 0..100 */
 if (percent < 0) { percent = 0; }
 if (percent > 100) { percent = 100; }

 /* Move the slider line to the new mouse position */
 obj = svgDocument.getElementById("slide" + which);
 obj.setAttribute("y1", 100-percent);
 obj.setAttribute("y2", 100-percent);
 rgb[which] = percent;

 /*
 * Put together all the color values and
 * change the shirt's color accordingly.
 */
 colorStr = "rgb(" + rgb[0] + "%," +
 rgb[1] + "%," + rgb[2] + "%)";
 obj = svgDocument.getElementById("shirt");
 obj.setAttribute("fill", colorStr);

 /*
 * Change text to match slider position
 */
 obj = svgDocument.getElementById("pct" + which);
 newText = svgDocument.createTextNode(rgb[which] + "%");
 obj.replaceChild(newText, obj.getFirstChild());
}

This code accomplishes the HTML to SVG communication. Our last step is to
communicate from SVG back to HTML if the user decides to choose colors with the
slider. Rather than continuously update the HTML fields, we have made the design
decision to update the HTML when dragging stops. We add the boldface code to function

 195

endColorDrag. The result is shown in Figure 11-12; the screenshot has been edited to
eliminate unnecessary whitespace).

function endColorDrag()
{
 /*
 * If a slider was being moved, send the slider number
 * and its value back to the updateHTMLField function
 * in the parent web browser window.
 */
 if (slideChoice >= 0)
 {
 parent.updateHTMLField(slideChoice,
rgb[slideChoice]);
 }

 /* In any case, nobody's being dragged now */
 slideChoice = -1;
}

Figure 11-12. Screenshot of HTML and SVG interaction

11.9.6 Scripting and Animation Together

Scripting and animation can work together. You can start an animation in response to an
event, and you can use the beginning, end, or repetition of an animation to invoke a
function. Example 11-20 shows a trapezoid and a button. When you click the button, a
message saying "Animation in progress" appears, and the trapezoid rotates 360 degrees.

 196

When it finishes rotating, the message disappears. Relevant screenshots are shown in
Figure 11-13.

Figure 11-13. Screenshot of two stages of scripting with animation

I've found it easier to design the SVG first and add the scripting
later. One advantage of this method is that I can see if the base
drawing looks good before I start making it react to events.

Example 11-20. Scripting and Animation Together

<script type="text/ecmascript">
<![CDATA[

function init(evt)
{
 /* initialization code goes here */
}

function setMessage(visStatus) [1]
{
 var message = svgDocument.getElementById("message");
 message.setAttribute("visibility", visStatus);
}

//]]>
</script>

<g id="button"> [2]
 <rect x="10" y="10" width="40" height="20" rx="4" ry="4"
 style="fill: #ddd;"/>
 <text x="30" y="25" style="text-anchor: middle;">Start</text>
</g>

<text id="message" x="60" y="25" visibility="hidden"> [3]
 Animation in progress.
</text>

<g transform="translate(100, 60)">
 <path d="M-25 -15, 0 -15, 25 15, -25 15 Z"
 style="stroke: gray; fill: #699;">

 <animateTransform id="trapezoid" attributeName="transform"
 type="rotate" from="0" to="360"
 begin="button.click" [4]
 dur="6s"

 197

 onbegin="setMessage('visible')" [5]
 onend="setMessage('hidden')"/>
 </path>
</g>

[1] Here's the function, which takes the visibility status that was passed to it, and sets the
message's visibility property accordingly.

[2] The start button is a simple rounded rectangle with text. The entire group gets the id.

[3] The message, initially hidden. Again, we use a presentation attribute here rather than
a style, since we'll be modifying the attribute.

[4] Instead of giving the begin time for the animation in terms of seconds, we begin
whenever a click event is detected on the button object. Since we're waiting for the
event, we use click rather than the event handler attribute onclick.

[5] The next two lines are event handlers, so they begin with the prefix on. When the
animation begins (onbegin), we call setMessage with the argument 'visible'; when it
ends (onend) we call the same function with the argument 'hidden'.[4]

[4] The event handler onrepeat is invoked each time an animation repeats after
the first iteration.

11.9.7 Animation via Scripting

Because SMIL2 animation is integrated with SVG, your animations become part of the
document structure. Since it's all XML, animated SVG documents remain easy for
humans to read and for XML tools to process. The addition of scripting, as we showed in
the preceding section, makes it possible to add some user interaction with an animation.

While animation can handle most of the things you'll want to move, there are some things
the animation elements can't do easily. For example, it's hard to change a <path>
dynamically. We're not talking about making an object move along a path
(<animateMotion>); we want the path itself to change over time. The path isn't a
transformation, so <animateTransform> won't work; in addition, it's not a simple
numeric value, so we can't use <animate>. We'll have to use scripting instead.

Example 11-21 uses scripting alone to repeatedly change the d attribute of the path over
time. The key to doing animation via scripting is the setInterval function. setInterval sets
an "alarm clock" to go off repeatedly at regular intervals. When the alarm goes off, the
scripting engine performs the ECMA Script statements you want. The simplest form is:

timer_variable =
 setInterval("ECMA Script function",
 interval time in milliseconds);

 198

This function returns a reference to the timer that it set. You should save that reference in
a global variable so that other functions can access it. You call setInterval once, and, the
ECMA Script function you've specified will be called every interval milliseconds. The
repetition will continue until you call clearInterval(timer_variable).

Example 11-21 shows a cubic Bézier curve. When the user clicks the start button, we'll
move the control points every tenth of a second for five seconds (fifty movements in all).
The control points will move towards each other in the x direction starting at five pixels
per interval. They will move away from each other in the y direction at three-fourths of a
pixel per interval. Note especially the boldfaced line and its commentary!

Example 11-21. Animating a path with scripting

<svg width="300" height="200" viewBox="0 0 300 200"
 onload="init(evt)">
<script type="text/ecmascript">
<![CDATA[

/* Starting coordinates for both control points */
var cp1 = new Array(100, 50);
var cp2 = new Array(200, 200);

var moveLimit = 50; // total number of moves to make
var currentMove = 0; // current number of moves

var deltaX; // X movement amount
var deltaY; // Y movement amount

var delay = 100; // one-tenth second

var timer; // store the alarm clock

function init(evt)
{
 /* do any global initialization here */
}

/*
 * Initialize movement; set control points back to their
 * starting positions, set the current number of moves
 * to zero, and set an interval timer to move the
 * control points every "delay" milliseconds.
 */
function setupMove()
{
 var i;

 currentMove = 0;
 deltaX = 5; /* start X at five pixels per interval */
 deltaY = 0.75; /* start Y at 3/4 pixels per interval */
 setGraphicInfo();
 timer = setInterval("moveControlPoints()", delay);
}

 199

function setGraphicInfo()
{
 var obj;
 var pathString;

 /*
 * Construct a path that describes a cubic
 * Bezier curve using the current coordinates
 * for the control points.
 */
 pathString = "M 50 120 C " +
 (cp1[0] + currentMove * deltaX) + " " +
 (cp1[1] - currentMove * deltaY) + ", " +
 (cp2[0] - currentMove * deltaX) + " " +
 (cp2[1] + currentMove * deltaY) + ", " +
 "250, 120";

 obj = svgDocument.getElementById("cubic");
 obj.setAttribute("d", pathString);
}

function moveControlPoints()
{
 currentMove++; // we've done one more move
 setGraphicInfo(); // adjust the control points and path

 /*
 * If we have finished moving, clear the timer, which
 * will stop the repeated wake-up calls.
 */
 if (currentMove >= moveLimit)
 {
 clearInterval(timer);
 }
}

function stopMovement()
{
 clearInterval(timer);
}

/*
 * setInterval expects its first argument to be found in
 * the main window. We oblige it by creating a reference
 * to this script's moveControlPoints function as a
 * window property
 */
window.moveControlPoints = moveControlPoints;

//]]>
</script>

<g id="button" onclick="setupMove();">

 200

 <rect x="10" y="10" width="40" height="20" rx="4" ry="4"
 style="fill: #ddd;"/>
 <text x="30" y="25" style="text-anchor: middle;">Start</text>
</g>

<g id="button" onclick="stopMovement()">
 <rect x="70" y="10" width="40" height="20" rx="4" ry="4"
 style="fill: #ddd;"/>
 <text x="90" y="25" style="text-anchor: middle;">Stop</text>
</g>

<path id="cubic" style="stroke: blue; fill: none;"
 d="M 50 120 C 100 50, 200 200, 250 120" />

</svg>

Figure 11-14 shows the path in its initial and final states.

Figure 11-14. Beginning and ending of scripted path change

In this example, the moveControlPoints function didn't need any parameters. Let's say the
function needed two parameters, pathColor and pathStrokeWidth To ensure that
moveControlPoints got those parameters every time it was called, we would add them at
the end of our call to set up the interval timer:

timer = setInterval("moveControlPoints()", delay,
 pathColor, pathStrokeWidth);

setInterval [5] is the only safe way to script repeated actions with a delay interval. Using
setInterval is like leaving a message with a desk clerk at a hotel to give you a wake-up
call every hour; between calls you are free to sleep or do other things. In scripting terms,
this kind of code leaves the computer free to do other tasks between actions:

[5] Or its variant, setTimeout, which sets the timer to go off exactly once. The
generic model for calling this function is:

timer_variable = setTimeout("action_function(parameters)", delay);
Use clearTimeout(timer_variable) to cancel a pending timer event.

function startGoodAction()

 201

{
 timer = setInterval("doGoodAction()", delay);
}

function doGoodAction()
{
 obj.setAttribute("x", value);
 value = value + increment;
 repetitions = repetitions + 1;
 if (repetitions == limit)
 {
 clearInterval(timer);
 }
}

Beginning programmers will often do something like this:

function doBadAction()
{
 obj.setAttribute("x", value);
 value = value + increment;
 if (repetitions != limit)
 {
 waitCount = 0;
 while (waitCount < waitLimit)
 waitCount++;
 doBadAction();
 }
}

This technique is akin to constantly looking at your watch and asking, "Is it time yet?"
This gives you no time to sleep or do anything else. In an SVG script, it gives the
computer little chance to attend to other tasks. Additionally, this uses a recursive style,
which, if not carefully controlled, can consume your system resources faster than you can
say "Error: stack overflow."

Though the preceding example was a simple one, this technique has great power. If you
choose to use scripting to do animation, you will then have available all the interactivity
features of scripting; you can make animation dependent on mouse position or complex
conditions involving multiple variables. If you're doing simple animation, we recommend
that you use SVG's animation elements.

 202

Chapter 12. Generating SVG

The previous chapters have described the major features of SVG. All the examples have
been relatively modest and have been written in an ordinary text editor. For graphics of
any great complexity, though, few people will write the SVG from scratch. Let's face it:
almost nobody does this by hand. Instead, graphic designers and programmers will use
some sort of graphic tool that outputs SVG, or they will take existing raw data and
convert it to SVG. If you're dealing with a graphic program's output that is already in
SVG format, you can sit back and relax; all the heavy lifting has been done for you. If
you ever take a look at the SVG that it generated, it may be hard to read. Some programs,
for example, may not use groups (the <g> element) efficiently or they may not optimize
paths. When you use these programs, you are trading off the ease of generating SVG for
the absolute control you have when you write the entire file by hand.

If you're dealing with data that's already in XML format, you may just need to extract the
pertinent data and plug it into an SVG framework. In such a case, you can use tools that
implement Extensible Stylesheet Language Transformations (XSLT). If the data is in
XML but needs a fair amount of processing, you may need to write a program in Java or
some other language to do the conversion. Luckily, you can take advantage of freely
available XML parsers to do the busy work for you.

Finally, if you are dealing with data that isn't in XML format, you have some work ahead
of you. If you have raw data in either ASCII or binary form you may need to write
custom code to do the conversion.

In this chapter, we'll start with a custom Perl program to convert geographical mapping
data that's not in an XML format to an SVG file. Then we will use Java to convert a
representation of a matrix in Mathematical Markup Language (MathML) format to SVG.
The last example will use XSLT to convert an XML-formatted aeronautical weather
report to SVG.

12.1 Using Perl to Convert Custom Data to SVG

If anyone lives a life that revolves around graphics display, it's a mapmaker.

Cartographers are finding XML markup in general and SVG in particular to be

excellent vehicles for putting data into a portable format. At present,

though, much of the data that is currently available is in custom or

proprietary formats. One of these is the proprietary format developed by

Environmental Systems Research Institute for

use by their ArcInfo Geographic Information System. Data created in this system can be
exported in an ASCII "ungenerate" form. Such a file contains a series of polygon
descriptions, followed by a line with the word END on it. Each polygon starts with a line
that consists of an integer polygon identification number and the x- and y-coordinates of
the polygon's centroid. This line is followed by the x- and y-coordinates of the polygon's

 203

vertices, one vertex per line. A line with the word END on it marks the end of the polygon.
Here is a sample file:

 1 -0.122432044171565E+03 0.378635608621089E+02
 -0.122418712172884E+03 0.378527169597E+02
 -0.122434402770255E+03 0.378524342437443E+02
 -0.122443301934511E+03 0.378554484803880E+02
 -0.122446316168374E+03 0.378610463416856E+02
 -0.122438565286068E+03 0.378683666259093E+02
 -0.122418712172884E+03 0.378527169591107E+02
END
 2 -122.36 37.82
 -122.378 37.826
 -122.377 37.831
 -122.370 37.832
 -122.378 378.826
END
END

Converting such a file to SVG is a simple task. The only twist is that ARC/INFO stores
data in Cartesian coordinates, so we will have to flip the y-coordinates upside-down. The
program we'll write in Perl will run from the command line as follows:

perl mapSVG.pl input-file width decimals

Where the width is the width of the resulting SVG graphic in pixels, and decimals is
an optional parameter giving the number of digits you wish to keep after the decimal
point in coordinate values.

The program will start with a utility subroutine that grabs one token at a time from the
input file:

#!/usr/bin/perl

@line_buffer is a global

@line_buffer = ();

Input file PFILE is opened in main
part of program.

sub get_token
{
 my ($data);
 if ((scalar @line_buffer) == 0) # out of data?
 {
 $data = <PFILE>; # grab a line
 $data =~ s/^\s+//; # get rid of leading...
 $data =~ s/\s+$//; # ...and trailing whitespace
 @line_buffer = split /\s+/, $data; # place tokens into a buffer
 }

 204

 $data = shift @line_buffer; # take one token out and return it
 return $data;
}

Here is the remainder of the program:

if (scalar @ARGV < 2) [1]
{
 print "Usage: $0 polygon_file width (decimals)\n";
 print "polygon_file - file in ARC/INFO ungenerate format\n";
 print "width - desired width of output SVG\n";
 print "decimals - optional # of decimal places to keep\n";
 print "Output SVG goes to standard output.\n";
 exit 0;
}

open PFILE, $ARGV[0] or die("Cannot open polygon file $ARGV[1]");

$width = $ARGV[1];
if ($width <= 0)
{
 die("Width must be greater than zero.");
}

$n_decimals = ((scalar @ARGV) == 3) ? $ARGV[2] : 0;

Set maxima and minima [2]

$min_x = 1.0e100;
$min_y = 1.0e100;
$max_x = -1.0e100;
$max_y = -1.0e100;

undef @polygon_list;

a file consists of a series of polygon numbers followed
by pairs of x-y coordinates. Each polygon is finished
by an END token, and the file is marked by an END token
instead of a polygon number

while (1) [3]
{
 $polygon_number = get_token();
 last if ($polygon_number =~ /END/);

 undef @polygon; # the storage area for this particular polygon

 while (1)
 {
 $x = get_token();
 last if ($x =~ /END/);
 $y = get_token();
 push @polygon, $x, $y;

 205

 #
 # keep track of maximum and minimum coordinates
 #
 if ($x < $min_x) {$min_x = $x;}
 if ($x > $max_x) {$max_x = $x;}
 if ($y < $min_y) {$min_y = $y;}
 if ($y > $max_y) {$max_y = $y;}
 }

 push @polygon_list, [@polygon]; [4]

}

close PFILE;

print STDERR "max x=$max_x min x=$min_x width=", max_x-min_x, "\n";
print STDERR "max y=$max_y min y=$min_y height=", max_y-min_y, "\n";

Figure out the scaling factor to make the width equal to
the one specified on the command line, then find the
corresponding height.

$scale = $width / ($max_x - $min_x);
$height = ($max_y - $min_y) * $scale;

Round it up so viewport and viewBox are integral

$height = int ($height + 0.5);

Insert extra pixels for padding

$pad_width = $width + 30;
$pad_height = $height + 30;

Begin constructing the SVG file

print <<"SVG_HEADER"; [5]
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="$pad_width" height="$pad_height"
 viewBox="0 0 $pad_width $pad_height">
<title>Map constructed from $ARGV[0]</title>
<g transform="translate(15,15)" style="fill: none; stroke: black;">
SVG_HEADER

$poly_num = 1;
foreach $poly (@polygon_list)
{
 $n = 0;
 print qq%<polyline id="poly$poly_num" points="\n\t%;

 206

 #
 # get rid of first coordinate
 #
 shift @$poly; [6]
 shift @$poly;

 foreach $coord (@$poly)
 {
 if ($n % 2 == 0) # x-coordinate
 {
 $coord = ($coord - $min_x) * $scale;
 }
 else # flip y-coordinate
 {
 $coord = ($max_y - $coord) * $scale; [7]
 }
 if ($n_decimals != 0)
 {
 $coord = int($coord * (10**$n_decimals))/(10**$n_decimals);
 }

 print $coord, " ";

 #
 # to avoid excessively long text lines, place only
 # eight coordinates on a line
 #
 $n = ($n+1) % 8;
 print "\n\t" if ($n == 0);
 }
 print qq%" />\n%; # close off the <path> element
 $poly_num++;
}

Close off open tags to end the file.

print "</g>\n</svg>\n";

[1] Obligatory argument retrieval and error checking.

[2] Set up variables. The initial maxima and minima are huge enough to handle the
coordinates of a map of anything smaller than a minor galaxy. The variable
@polygon_list will be a list of the polygons, each of which will itself be represented as
a list.

[3] The outer loop reads polygon ID numbers, and the inner loop stores the coordinates in
the @polygon list.

[4] The square brackets are very important. They create an anonymous list to contain the
coordinates in @polygon, and that list is pushed onto @polygon_list. Without the

 207

brackets, it would simply append all the coordinates, ungrouped, to the end of
@polygon_list.

[5] This line prints, verbatim, all the text up to (but not including) a line that begins with
the literal SVG_HEADER. Because SVG_HEADER is enclosed in double quotes, we can use
variable interpolation in the verbatim text.

[6] The $poly loop variable, set in the outer foreach, is an entire list, which is why it
must be preceded by an @ to be accessed properly.

[7] We had to keep track of the maximum and minimum x-coordinate to calculate the
width scaling factor properly; we kept track of the maximum y-coordinate so we could
change from Cartesian coordinates to SVG style coordinates.

Running this program with the data for the state of Michigan with an output width of 250
pixels and a decimal accuracy of three digits produces Figure 12-1. Michigan was chosen
because it requires several polygons to draw, and its outline is more visually interesting
than that of, say, Colorado. The data came from the U.S. Census Bureau Cartographic
Boundary Files Web Site at http://www.census.gov/geo/www/cob/.

Figure 12-1. Conversion from ARC/INFO ungenerate to SVG

12.2 Using Java to Convert XML to SVG

While preparing to write Appendix D I had to decide how to produce the matrix
equations. At that time, I didn't have a definitive answer from the production staff at
O'Reilly on the format in which to submit the data. I decided on an ad-hoc subset of
MathML,[1] an XML application for describing the presentation and content of
mathematical information. This choice gave me the maximum flexibility; I would not be
tied down to a proprietary equation editor, conversion to the TeX typesetting language (a
common format among publishers) could be done with a trivial XSLT file, and using
MathML would give me an example for this chapter.

http://www.census.gov/geo/www/cob/

 208

[1] You can find out about the complete MathML specification at
http://www.w3.org/Math/.

This example is atypical in that the majority of its output will be <text> elements. It is
further atypical in that it is not a general tool, nor is it intended to be. It is, however,
typical in that it shows how to parse an input XML document, construct a new XML
document in memory and output through a serializer.

The subset of MathML in this example is as follows; all the elements are container
elements:

MathML element Contains
<math> root element of a MathML document
<mrow> a formula
<mtable> a matrix (table)
<mtr> a matrix row
<mtd> a data cell within a row
<mn> a numeric value
<mi> an identifier (variable)
<mo> a mathematical operator
<msub> subscripted content

The general outline of the program is as follows:

• Parse the input document to create a Document Object Model in memory.
• Find the matrix with the maximum number of rows; this will determine the height

of the output SVG document.
• Go through the formula and output matrices and operators as specified. These

become elements in an SVG Document that is also built in memory.
• If the operator is a parenthesis, make it as large as the largest matrix in the entire

formula. This is an assumption that saves a lot of programming, and works well
for most of the formulas that the appendix needs.

• Each matrix is output within an SVG group (<g>) element. Again, for ease of
programming, the matrix is drawn with its upper left corner at (0,0) and will be
moved to its proper place with a translate transformation. The square brackets
that enclose the matrix's values will be drawn with a <path> element.

• Once the SVG document has been built, use the parser's serialize method to create
an output file.

This program uses the Xerces XML parser from the Apache Software Foundation; you
may download it and read its documentation at http://xml.apache.org. The program starts
with a large number of imports from the standard Java libraries and the Xerces parser.

import java.awt.Dimension;
import java.awt.Font;
import java.awt.FontMetrics;

http://www.w3.org/Math/
http://xml.apache.org/

 209

import java.awt.Graphics;
import java.awt.Image;
import java.awt.image.BufferedImage;

import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import java.io.IOException;

import org.w3c.dom.Attr;
import org.w3c.dom.Document;
import org.w3c.dom.DocumentFragment;
import org.w3c.dom.DocumentType;
import org.w3c.dom.DOMImplementation;
import org.w3c.dom.Element;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.w3c.dom.Text;

import org.apache.xerces.parsers.DOMParser;
import org.apache.xml.serialize.XMLSerializer;
import org.apache.xml.serialize.OutputFormat;

The program itself starts with constants that establish the default line height, font height
for normal characters, font height for subscripted characters, extra height at the top and
bottom of the image, and extra horizontal space between items:

public class MLtoSVG {

 //
 // Constants
 //

 private static final int LINE_HEIGHT = 24;
 private static final int FONT_HEIGHT = 14;
 private static final int SUBSCRIPT_HEIGHT = 12;
 private static final int EXTRA_HEIGHT = 10;
 private static final int X_SPACING = 2;

Although global variables are considered a mortal sin, I was too lazy to pass parameters
ad infinitum, so the input document, output document, and root element of the output
document became properties of the class:

 /** The "before" document */
 protected Document mlDocument;

 /** The "after" document */
 protected Document svgDocument;

 /** Permanent pointer to SVG document's root element */
 protected Element svgRoot;

The main function is entirely straightforward:

 210

 public static void main(String argv[]) {

 // is there anything to do?
 if (argv.length == 0) {
 System.err.println("usage: java MLtoSVG filename");
 System.exit(1);
 }

 // vars
 MLtoSVG converter = null;

 converter = new MLtoSVG();
 converter.readDocument(argv[0]);
 converter.processDocument();
 converter.printDocument();

 } // main(String[])

The readDocument method will set up a DOM parser and read the input file. However,
the standard parser does not come with any error handling. Thus, there is the following
implementation of the org.xml.saxErrorHandler abstract class. Rather than reinvent the
wheel, I stole the code outright from a sample program that came with the Xerces parser,
and produced the ParserErrorHandler class.

/*
 * ParserErrorHandler code taken from DOMWriter.java sample code.
 * Copyright (c) 1999 The Apache Software Foundation. All rights
 * reserved. For licensing details, see http://www.apache.org/
 */

import org.xml.sax.ErrorHandler;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.SAXNotRecognizedException;
import org.xml.sax.SAXNotSupportedException;

public class ParserErrorHandler
 implements ErrorHandler {

 //
 // ErrorHandler methods
 //

 /** Warning. */
 public void warning(SAXParseException ex) {
 System.err.println("[Warning] "+
 getLocationString(ex)+": "+
 ex.getMessage());
 }

 /** Error. */
 public void error(SAXParseException ex) {
 System.err.println("[Error] "+
 getLocationString(ex)+": "+
 ex.getMessage());

 211

 }

 /** Fatal error. */
 public void fatalError(SAXParseException ex) throws SAXException {
 System.err.println("[Fatal Error] "+
 getLocationString(ex)+": "+
 ex.getMessage());
 throw ex;
 }

 //
 // Private methods
 //

 /** Returns a string of the location. */
 private String getLocationString(SAXParseException ex) {
 StringBuffer str = new StringBuffer();

 String systemId = ex.getSystemId();
 if (systemId != null) {
 int index = systemId.lastIndexOf('/');
 if (index != -1)
 systemId = systemId.substring(index + 1);
 str.append(systemId);
 }
 str.append(':');
 str.append(ex.getLineNumber());
 str.append(':');
 str.append(ex.getColumnNumber());

 return str.toString();

 } // getLocationString(SAXParseException):String

}

This program uses the Xerces parser explicitly; some programs will put the parser name
in a string and then instantiate it dynamically:

String parserName = "org.apache.xerces.parsers.DOMParser";
DOMParser parser =
 (DOMParser)Class.forName(parserName).newInstance();

I didn't see the need for this, so I constructed the parser directly, set the error handler,
parsed the file whose name is the input to the readDocument function, and saved the
document that is returned. Failure at any point is met with a stack trace.

 /** Read the input document and construct a document tree. */
 public void readDocument(String uri) {
 ParserErrorHandler errHandler = new ParserErrorHandler();
 mlDocument = null;
 try {
 DOMParser parser = new org.apache.xerces.parsers.DOMParser();
 parser.setErrorHandler(errHandler);
 parser.parse(uri);

 212

 mlDocument = parser.getDocument();
 } catch (Exception e) {
 e.printStackTrace(System.err);
 }
 } // readDocument(String)

Similarly, once the SVG document has been built, sending it to a file — in this case the
standard output — is no great challenge. Most of this function performs error-checking.

 public void printDocument() {

 if (svgDocument == null)
 {
 return;
 }
 PrintWriter out = null;
 try{
 out =
 new PrintWriter(new OutputStreamWriter(System.out, "UTF-8"));
[1]
 }
 catch (Exception e)
 {
 System.out.println("Error creating output stream");
 System.out.println(e.getMessage());
 System.exit(1);
 }
 OutputFormat oFormat = new OutputFormat("xml", "UTF-8", true); [2]
 XMLSerializer serial = new XMLSerializer(out, oFormat); [3]
 try
 {
 serial.serialize(svgDocument);
 }
 catch (java.io.IOException e)
 {
 System.out.println(e.getMessage());
 }
 }

[1] First, construct an output stream with your favorite encoding method.

[2] A serializer requires an output format. This constructor's three parameters are the
output method (which is normally one of "xml", "html", or "text"); the character
encoding, which should be "UTF-8" to keep your international clients happy; and a
Boolean that tells whether the output should be indented or not.

[3] The OutputFormat is used when creating the serializer.

This leaves the majority of the work to the processDocument function.

 public void processDocument()
 {

 213

 svgDocument = null;

 /* anything to do? */
 if (mlDocument == null)
 {
 return;
 }

 /* Create the output document */
 DOMImplementation dImplement = mlDocument.getImplementation();
[1]
 DocumentType dType = dImplement.createDocumentType([2]
 "svg",
 "-//W3C//DTD SVG 1.0//EN",
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd"
);
 svgDocument = dImplement.createDocument(null, "svg", dType);
 svgRoot = (Element) svgDocument.getDocumentElement();

 Element mrowElement; // store <mrow> element for ease
 of access
 NodeList matrices; // list of all <mtable> elements
 NodeList rows; // list of all <mtr> elements
 NodeList nodes; // immediate children of <mrow>
 int i; // ubiquitous counter

 /* current x position while creating matrices */
 int currX = 0;

 /* maximum number of rows in any one matrix */
 int maxRows = 0;
 int totalHeight;

 [3]

 /* Find the first <mrow> node */
 nodes = mlDocument.getElementsByTagName("mrow"); [4]
 mrowElement = (Element) nodes.item(0);

 /* Find the maximum number of rows among all the matrices */
 matrices = mrowElement.getElementsByTagName("mtable"); [5]
 for (i = 0; i < matrices.getLength(); i++)
 {
 rows = ((Element)
matrices.item(i)).getElementsByTagName("mtr");
 if (rows.getLength() > maxRows)
 {
 maxRows = rows.getLength();
 }
 }

 /* Calculate total height */
 totalHeight = maxRows * LINE_HEIGHT + EXTRA_HEIGHT;

 /* Now create the SVG for the matrices and operators */
 nodes = mrowElement.getChildNodes(); [6]

 214

 for (i=0; i < nodes.getLength(); i++) [7]
 {
 if (nodes.item(i).getNodeName().equals("mtable"))
 {
 currX += generateMatrix(nodes.item(i), currX, totalHeight);
 }
 else if (nodes.item(i).getNodeName().equals("mo"))
 {
 currX += generateOperator(nodes.item(i), currX,
totalHeight);
 }
 }

 currX += 2 * X_SPACING; // put some padding at the right

 svgRoot.setAttribute("width", Integer.toString(currX)); [8]
 svgRoot.setAttribute("height", Integer.toString(totalHeight));
 svgRoot.setAttribute("viewBox",
 "0 0 " + currX + " " + totalHeight);

 }

[1] The processDocument function starts by creating the SVG document. Since every
parser implementation has its own way of storing the objects, you must ask the
DOMImplementation class to give you the details.

[2] The implementation is asked to create a document. The createDocumentType
function's parameters will be used when producing the <!DOCTYPE> in the output; you
provide a root element name, and a public and system identifier for the DTD. The
createDocument function's parameters are the namespace URI (in this case, none is
needed), the name of the top-level document element, and the document type. The root
element is retrieved for future reference by calling getDocumentElement.

[3] Now it's time to extract information from the MathML document. Among the
methods you use to access information in the Document Object Model are the following:

NodeListgetElementsByTag (DOMString tagName)

Calling element.getElementsByTag("name") returns a list of all the
descendant nodes of the specified element that have the specified tag name. These
are not just the child nodes; they are descendants at any depth, which is very
advantageous in this program.

Node item (int n)

Calling nodeList.item(n) retrieves node number n from the given node list.

NodeList getChildNodes ()

 215

Calling node.getChildNodes() retrieves a list of all the immediate children of
the given node.

short getNodeType ()

Calling node.getNodeType() returns an integer that tells which kind of node
this is (element, text, CDATA, entity, etc.).

String getNodeName ()

Calling node.getNodeName() returns a string based on the node type. If the
node is an element, the tag name is returned; if it's a text node, the string "#text"
is returned.

Node getNextSibling ()

Calling node.getNextSibling() retrieves the given node's next sibling, or null
if this is the last of the siblings. Sibling nodes are nodes that are all descendants of
a common parent, listed in the order in which they appear in the document.

[4] The first <mrow> element encloses the entire matrix expression. The easiest way to
find it is to grab all the tags and store the address of the first one. The code casts the
results of the item call to Element . This is safe, since the node lists were constructed by
calls that return only Element s.

[5] In order to center all the matrices vertically, we need to find the matrix with the
largest number of rows. Presuming that there are no nested matrices, this is done by
walking through each <mtable> element, extracting a list of all its <mtr> descendants,
and checking that list's length. This maximum number of rows is used to calculate the
totalHeight of the resulting graphic.

[6] We then call the getChildNodes function to retrieve a NodeList of all the immediate
children of the <mrow> element.

[7] The program iterates through these children, generating a matrix when encountering
an <mtable>, or an operator symbol when encountering an <mo> element. Everything else
is ignored, which conveniently skips over the "hidden" text nodes that come from
carriage returns between lines in the source file.

The generateMatrix and generateOperator create the output SVG. Once they are done,
the currX variable will contain the total width of the graphic.

[8] The processDocument function wraps up by using the setAttribute function to add the
width, height, and viewBox attributes to the svgRoot variable.

 216

setAttribute is just one of the functions used to populate the new document. Other
functions include:

Element createElement (DOMString elementName)

Calling document.createElement("name") returns an element which
belongs to the specified document, but is not part of the document hierarchy (it
hasn't been placed in the "tree" yet).

Text createTextNode (String data)

Calling document.createTextNode("value") returns a text node whose
content is the given value. Again, this node belongs to the specified document, but
it is not part of the document hierarchy (it hasn't been placed in the "tree" yet).

void setAttribute (DOMString data , DOMString value)

Calling element.setAttribute("attr", "value") sets the particular
attribute of the specified element to the given value. If the attribute already exists,
any previous value it had is replaced with the new value.

Node appendChild (Node newchild)

Calling parentNode.appendChild(newchild) appends the given new child
node to the child nodes of the parent node. It returns a reference to the new child
node. This puts the node into the document hierarchy.

Node insertBefore (Node newchild , Node refchild)

Calling parentNode.insertBefore(newChild,referenceChild) in-
serts the new child node into the list of child nodes of the parent node just before
the child node specified in the second parameter. The function returns a reference
to the new child node. (The sample program doesn't use this function, but it's
included here because it's generally useful.)

Let us now turn our attention to the generateMatrix function.

public int generateMatrix(Node mtableNode, int currX, int totalHeight)
{
 double y; [1]
 int x = 0;
 NodeList rowList; // list of all <mtr> elements
 NodeList cellList; // list of all <mtd> elements
 Element newElement; // a catch-all "new element"
 Element gElement; // a created <g> element
 Element startColumn; // marks beginning of a column
 Element textElement; // a created <text> element

 217

 int nRows; // number of rows in table
 int nCells; // number of cells per row
 int i; // ubiquitous loop counter
 int row, col; // more counter variables
 int colWidth; // maximum width of a column

 Dimension textInfo; // holds text width and height

 [2]

 rowList = ((Element) mtableNode).getElementsByTagName("mtr");
 nRows = rowList.getLength();

 /* Check to see that all rows have the same number of cells */
 cellList = ((Element) rowList.item(0)).getElementsByTagName("mtd");
 nCells = cellList.getLength();

 for (i = 1; i < nRows; i++)
 {
 cellList = ((Element) rowList.item(i)).getElementsByTagName("mtd");
 if (cellList.getLength() != nCells)
 {
 System.err.println("All rows must have " + nCells + " cells ");
 System.exit(1);
 }
 }

 y = (totalHeight - nRows * LINE_HEIGHT) / 2.0; [3]

 newElement = svgDocument.createElement("g"); [4]
 newElement.setAttribute("transform",
 "translate(" + currX + ", " + y + ")");
 newElement.setAttribute("font-family", "sans-serif");
 newElement.setAttribute("font-size",
 Integer.toString(FONT_HEIGHT));
 gElement = (Element) svgRoot.appendChild(newElement);

 newElement = svgDocument.createElement("path"); [5]
 newElement.setAttribute("d",
 "M3 0h-3v" + (nRows*LINE_HEIGHT) +
 "h3");
 newElement.setAttribute("fill", "none");
 newElement.setAttribute("stroke", "black");

 /* The next "nCells" siblings of this element [6]
 will be the first column of the matrix */
 startColumn = (Element) gElement.appendChild(newElement);

 /* Now get all the <mtd> cells in order */ [7]
 cellList = ((Element) mtableNode).getElementsByTagName("mtd");

 x = X_SPACING;

 textElement = null;

 for (col = 0; col < nCells; col++)
 {

 218

 Node currNode;

 colWidth = 0;
 for (row = 0; row < nRows; row++)
 {
 currNode = cellList.item(row * nCells + col);
 newElement = svgDocument.createElement("text"); [8]
 textInfo = constructTextNode(newElement, currNode,
 FONT_HEIGHT);
 textElement = (Element) gElement.appendChild(newElement);
 textElement.setAttribute("y",
 Integer.toString(row * LINE_HEIGHT + textInfo.height));
 textElement.setAttribute("text-anchor", "middle");
 textElement.setAttribute("font-size",
 Integer.toString(FONT_HEIGHT));
 if (textInfo.width > colWidth)
 {
 colWidth = textInfo.width;
 }
 }

 /* go back and put in the "x" coordinates */ [9]
 startColumn = (Element) startColumn.getNextSibling();
 for (row = 0; row < nRows; row++)
 {
 startColumn.setAttribute("x",
 Double.toString(x + colWidth/2.0));
 startColumn = (Element) startColumn.getNextSibling();
 }
 x += colWidth + X_SPACING;
 startColumn = textElement;

 }

 x += X_SPACING;
 /* the closing bracket */ [10]
 newElement = svgDocument.createElement("path");
 newElement.setAttribute("d",
 "M" + (x-3) + " 0h3v" + (nRows*LINE_HEIGHT) +
 "h-3");
 newElement.setAttribute("fill", "none");
 newElement.setAttribute("stroke", "black");
 startColumn = (Element) gElement.appendChild(newElement);

 return x + 2*X_SPACING;
}

[1] We start off with a clump of declarations. I tend to use a lot of temporary variables so
that I don't have to constantly call the DOM access functions.

[2] The function starts by extracting the number of rows in this matrix and seeing that all
the rows have the same number of cells in them.

 219

[3] After this sanity check, the function calculates where the top y coordinate of the
matrix should be when the matrix is vertically centered.

[4] Once the top position of the matrix is known, the program creates a <g> element to
enclose the matrix. The transform attribute positions it, and the font-family and
font-size will apply to all the text in that matrix. We are using presentation attributes
because it's easier to set them individually than to construct a string for the appropriate
style attribute.

The resulting element is appended to the root element's children, and, for ease of future
access, is stored in the variable gElement .

[5] The first thing inside the <g> is a <path> that draws the left bracket enclosing the
matrix.

[6] Following the bracket, generateMatrix draws the matrix's cells column by column.
Each cell will become a <text> element. As we insert each cell for a particular column
into the output tree, we'll keep track of its text width. At the end of the column, we'll
know the column's maximum width, and we will go back and update the x attributes of
each of the <text> elements. This requires us to remember the starting point after which
we began adding cells. That's why we had to save the position of the <path> element in
startColumn .

[7] Here's the code that creates the cells for the entire matrix. Note that we grabbed all the
<mtd> descendants of the <mtable> node. This bypasses any intervening elements, but
that's OK since we don't have any nested tables.

[8] The actual task of building the cell contents is left to the constructTextNode function;
in this segment of the code we set the y, font-size, and text-anchor attributes of the
cell.

[9] Here is the code that goes back to fill in the x attribute after each column is complete.
The getNextSibling function proceeds through the text elements that were just added.
Once this is done, we reset the startColumn variable to point to the very last textElement
element we added, for its siblings will become the next column.

[10] Finally, the function creates another <path> element for the right bracket of the
matrix, and the matrix has been generated. We return the total width of the matrix, plus a
bit of extra padding.

Now let's look at the constructTextNode function. The way the program is set up, text
may be subscripted within an <msub> element, which this function should handle. If the
text is enclosed in <mi> or <mn> elements, constructTextNode ignores the tags and takes
only the enclosed text. The parameters to constructTextNode are the destination node to

 220

which the text is to be added in the output tree, the parent source node that contains the
original text, and the font size for the text.

public Dimension constructTextNode(Node destNode, Node parentNode,
 int size)
{
 NodeList children = parentNode.getChildNodes(); [1]
 Node currNode;
 int i;
 Dimension d = new Dimension(0, 0);
 Dimension subDim;

 for (i=0; i < children.getLength(); i++)
 {
 subDim = new Dimension(0,0);
 currNode = children.item(i);
 if (currNode.getNodeName().equals("#text")) [2]
 {
 Text textNode;
 String value = currNode.getNodeValue();

 subDim = stringInfo(value, size);
 textNode = svgDocument.createTextNode(value);
 destNode.appendChild(textNode);
 }
 else if (currNode.getNodeName().equals("msub")) [3]
 {
 Element newElement;
 newElement = svgDocument.createElement("tspan");
 newElement.setAttribute("baseline-shift",
 "sub");
 newElement.setAttribute("font-size",
 Integer.toString(SUBSCRIPT_HEIGHT));
 newElement = (Element) destNode.appendChild(newElement);
 subDim = constructTextNode(newElement, currNode,
 SUBSCRIPT_HEIGHT);
 }
 else if (currNode.getNodeType() == Node.ELEMENT_NODE) [4]
 {
 subDim = constructTextNode(destNode, currNode, size);
 }

 d.width += subDim.width; [5]
 if (subDim.height > d.height)
 {
 d.height = subDim.height;
 }
 }
 return d;
}

public Dimension stringInfo(String str, int fontSize) [6]
{
 BufferedImage buffer = new BufferedImage(
 100, 100, BufferedImage.TYPE_INT_RGB);

 221

 Graphics g = buffer.getGraphics();
 Font f = new Font("SansSerif", Font.PLAIN, fontSize);
 g.setFont(f);
 FontMetrics fm = g.getFontMetrics();

 return new Dimension(fm.stringWidth(str), fm.getAscent());
}

[1] The function starts by getting all the immediate children of the source node and
setting the total width and height of the text, stored in variable d , to zero.

[2] We look at each of the children of the current source node in turn. If the child is a text
element, we create a text node for it, find its width and ascent height by calling stringInfo,
and append it to the destination node's children.

[3] However, if the child is an <msub> element, we must create a <tspan> element in the
output with a baseline-shift attribute for subscripting. We then recursively call
constructTextNode to add all the enclosed text to this new <tspan> node.

[4] If it's not text and not subscripted, it's some other element node that we don't care to
handle, so just do a recursive call to gather all its text and append it to the destination
node.

[5] No matter what course of action we took, subDim now contains the width and height
of the text that was appended. We add the width to the total and keep track of the
maximum height.

[6] constructTextNode calls the stringInfo function to determine the width and ascent
height of text. Because we don't know how an SVG viewer will render text, and thus can't
determine its length exactly, we have to do the best we can. In this instance, we load the
generic sans-serif font, set its size, get the font metrics, and use the results from that.
Since the output will come from the Batik SVG viewer, which is also Java-based, it's
reasonable to presume that the numbers will come out fairly close to the final results.
stringInfo opens up an in-memory image in order to access a graphics environment.

The last function to consider is generateOperator, which contains no new DOM concepts.
It checks to see if the first child of the mo element is a text node whose value is a left or
right parenthesis. If so, the function produces an elliptical arc as tall as the largest matrix
in the entire expression. Otherwise, it's some other mathematical operator, and is treated
as plain text by calling the constructTextNode function.

public int generateOperator(Node moNode, int currX, int totalHeight)
{
 double y;
 int fontsize;
 Element newElement, textElement;
 Dimension textInfo;

 currX += X_SPACING;

 222

 y = (totalHeight) / 2.0;

 fontsize = FONT_HEIGHT;
 if (moNode.getFirstChild().getNodeType() == Node.TEXT_NODE)
 {
 String str = moNode.getFirstChild().getNodeValue();
 if (str.equals("("))
 {
 newElement = svgDocument.createElement("path");
 newElement.setAttribute("d",
 "M" + (currX+12) + " 8 a12 " + y + " 0 0 0 " +
 "0" + " " + (totalHeight-EXTRA_HEIGHT - 8));
 newElement.setAttribute("fill", "none");
 newElement.setAttribute("stroke", "black");
 svgRoot.appendChild(newElement);
 return 16 + X_SPACING;
 }
 else if (str.equals(")"))
 {
 newElement = svgDocument.createElement("path");
 newElement.setAttribute("d",
 "M" + currX + " 8 a12 " + y + " 0 0 1 " +
 "0" + " " + (totalHeight-EXTRA_HEIGHT - 8));
 newElement.setAttribute("fill", "none");
 newElement.setAttribute("stroke", "black");
 svgRoot.appendChild(newElement);
 return 10 + X_SPACING;
 }
 }

 newElement = svgDocument.createElement("text");
 textInfo = constructTextNode(newElement, moNode, fontsize);

 textElement = (Element) svgRoot.appendChild(newElement);
 if (fontsize != FONT_HEIGHT)
 {
 y = 0;
 textElement.setAttribute("stroke-width",
 Double.toString((FONT_HEIGHT * 1.0 / fontsize)));
 }
 textElement.setAttribute("transform",
 "translate(" + currX + ", " + (y+textInfo.height/2.0) + ")");
 textElement.setAttribute("font-size",
 Integer.toString(fontsize));

 return textInfo.width + 2 * X_SPACING;
}

What do we get when we put this all together? The following MathML matrices:

<math>
<mrow>
<mo>(</mo>
<mtable>
<mtr>

 223

 <mtd> <mi>x</mi><msub><mn>1</mn></msub> </mtd>
 <mtd> <mi>y</mi><msub><mn>1</mn></msub> </mtd>
 <mtd> <mi>1</mi> </mtd>
</mtr>
</mtable>
<mo>*</mo>
<mtable>
<mtr>
 <mtd> <mo>cos(</mo><mi>a</mi><mo>)</mo> </mtd>
 <mtd> <mo>-sin(</mo><mi>a</mi><mo>)</mo> </mtd>
 <mtd> <mn>0</mn> </mtd>
</mtr>

<mtr>
 <mtd> <mo>sin(</mo><mi>a</mi><mo>)</mo> </mtd>
 <mtd> <mo>cos(</mo><mi>a</mi><mo>)</mo> </mtd>
 <mtd> <mn>0</mn> </mtd>
</mtr>

<mtr>
 <mtd> <mn>0</mn> </mtd>
 <mtd> <mn>0</mn> </mtd>
 <mtd> <mn>1</mn> </mtd>
</mtr>
</mtable>
<mo>)</mo>
<mo>=</mo>
<mtable>
<mtr>
 <mtd> <mi>x</mi><msub><mn>2</mn></msub> </mtd>
 <mtd> <mi>y</mi><msub><mn>2</mn></msub> </mtd>
 <mtd> <mi>1</mi> </mtd>
</mtr>
</mtable>
</mrow>
</math>

become this SVG:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"
 "http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-20001102.dtd">
<svg height="82" viewBox="0 0 378 82" width="378">
 <path d="M14 8 a12 41.0 0 0 0 0 64" fill="none" stroke="black"/>
 <g font-family="sans-serif" font-size="14"
 transform="translate(18, 29.0)">
 <path d="M3 0h-3v24h3" fill="none" stroke="black"/>
 <text font-size="14" text-anchor="middle" x="15.5"
 y="15">x<tspan baseline-shift="sub" font-size="12">1</tspan>
 </text>
 <text font-size="14" text-anchor="middle" x="44.0"
 y="15">y<tspan baseline-shift="sub" font-size="12">1</tspan>
 </text>
 <text font-size="14" text-anchor="middle"
 x="68.5" y="15">1</text>
 <path d="M79 0h3v24h-3" fill="none" stroke="black"/>

 224

 </g>
 <text font-size="14" transform="translate(106, 48.5)">*</text>
 <g font-family="sans-serif" font-size="14"
 transform="translate(115, 5.0)">
 <path d="M3 0h-3v72h3" fill="none" stroke="black"/>
 <text font-size="14" text-anchor="middle"
 x="28.5" y="15">cos(a)</text>
 <text font-size="14" text-anchor="middle"
 x="28.5" y="39">sin(a)</text>
 <text font-size="14" text-anchor="middle"
 x="28.5" y="63">0</text>
 <text font-size="14" text-anchor="middle"
 x="86.5" y="15">-sin(a)</text>
 <text font-size="14" text-anchor="middle"
 x="86.5" y="39">cos(a)</text>
 <text font-size="14" text-anchor="middle"
 x="86.5" y="63">0</text>
 <text font-size="14" text-anchor="middle"
 x="127.5" y="15">0</text>
 <text font-size="14" text-anchor="middle"
 x="127.5" y="39">0</text>
 <text font-size="14" text-anchor="middle"
 x="127.5" y="63">1</text>
 <path d="M138 0h3v72h-3" fill="none" stroke="black"/>
 </g>
 <path d="M262 8 a12 41.0 0 0 1 0 64" fill="none" stroke="black"/>
 <text font-size="14" transform="translate(274, 48.5)">=</text>
 <g font-family="sans-serif" font-size="14"
 transform="translate(288, 29.0)">
 <path d="M3 0h-3v24h3" fill="none" stroke="black"/>
 <text font-size="14" text-anchor="middle" x="15.5"
 y="15">x<tspan baseline-shift="sub" font-size="12">2</tspan>
 </text>
 <text font-size="14" text-anchor="middle" x="44.0"
 y="15">y<tspan baseline-shift="sub" font-size="12">2</tspan>
 </text>
 <text font-size="14" text-anchor="middle"
 x="68.5" y="15">1</text>
 <path d="M79 0h3v24h-3" fill="none" stroke="black"/>
 </g>
</svg>

which becomes Figure 12-2.

Figure 12-2. Sample converted from MathML to SVG

You can find out more about manipulating XML with Java in the aptly named book Java
& XML by Brett McLaughlin, published by O'Reilly & Associates.

 225

12.3 Using XSLT to Convert XML Data to SVG

12.3.1 Defining the Task

The final example in this chapter uses the Extensible Stylesheet Language
Transformations (XSLT) to extract information from an XML file and insert it into an
SVG file. The source data is in the Weather Observation Markup Format (OMF), defined
at http://zowie.metnet.navy.mil/~spawar/JMV-TNG/XML/OMF.html. OMF is, for the
most part, a wrapper for several different types of weather reports. The OMF elements
add annotation, decoded information, and quantities calculated from the raw reports. Here
is a sample report:

<Reports TStamp="997568716">
<SYN Title='AAXX' TStamp='997573600' LatLon='37.567, 126.967' BId='471080'
SName='RKSL, SEOUL' Elev='86'>
<SYID>47108</SYID>
<SYG T='22.5' TD='14.1' P='1004.1' P0='1014.1' Pd='0 0.1' Vis='22000'
Ceiling='INF' Wind='30-70, 1.5' WX='NOSIG' Prec=' ' Clouds='44070'>
32972 40703 10225 20141 30041 40141 50001 84070
</SYG></SYN>
</Reports>

Our objective is to extract the reporting station, the date and time, temperature, wind
speed and direction, and visibility from the report. These data will be filled into the
graphic template of Figure 12-3.

Figure 12-3. Graphic weather template

This example is atypical, in that all the information is contained in the attributes of the
source XML rather than the content of the elements. Paradoxically, this makes our
example typical, since real-world markup so often fails to follow the pristine examples
found in textbooks or reference manuals. You'll eventually encounter such data, so it may
as well be now. The OMF format attributes we're interested in are listed here, along with
the plan for displaying them in the final graphic. The first two required attributes come
from the <SYN> element, the rest are optional attributes from its child <SYG> element.

TStamp

http://zowie.metnet.navy.mil/~spawar/JMV-TNG/XML/OMF.html

 226

The timestamp in seconds since midnight, January 1, 1970 UTC. In the final
graphic, the date and time will be represented in text, and the time will also be
shown on an analog clock. The color of the clock face will be light yellow to
indicate hours between 6 A.M. and 6 P.M., and light blue for evening and night
hours.

SName

The reporting station's call letters, possibly followed by a comma and the station's
full name. The final graphic will represent this as text.

T

The air temperature in degrees Celsius. This will be displayed by coloring in the
thermometer to the appropriate level. If the temperature is greater than zero, the
coloring will be red; if less than or equal to zero, it will be blue.

Wind

A direction and speed, separated by a comma. The direction is measured in
degrees; 0 indicates wind blowing from true north, and 270 indicates wind from
the west. This will be represented by a line on the compass.

Wind direction may also be expressed as two numbers separated by a dash,
indicating a range of directions. Thus, 0-40 indicates wind from the north to
north-east. In this case, two dashed lines will be drawn on the compass.

The wind speed is expressed in meters per second. If two numbers are given,
separated by a dash, the second number indicates the speed of gusts of wind. This
information will be displayed in text form.

Vis

Surface visibility in meters, or the value INF for unlimited visibility. The final
graphic will represent this by filling in a horizontal bar. Any visibility above 40
kilometers will be presumed to be unlimited.

12.3.2 How XSLT Works

To convert an OMF source file to its destination SVG format, we will create a list of
specifications that tells which elements and attributes in OMF are of interest to us. These
specifications will then detail what SVG elements to generate whenever we encounter an
item of interest. If we were asking a human to do the transformation by hand, we could
write out an English language description:

• Begin a new SVG document by typing this:

 227

<!DOCTYPE svg PUBLIC "-//W3C/DTD SVG 1.0//EN",
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

• Go through the source document. As you find each element, look for instructions
on how to process it.

• To process the <Reports> element, type the following into a text editor, then
process any sub-elements as specified in comments.

<svg viewBox="0 0 350 200" height="200" width="350">
 <!-- process any SYN elements you find within this element -->
</svg>

• To process a <SYN> element, type this text and fill in the blanks:

<text font-size="10pt" x="10" y="20">
<!-- fill in the value of the SName attribute -->
</text>

<!-- process any SYG elements you find within this element -->

• To process a <SYG> element:
1. Extract the value of the T attribute, and use that value when following the

instructions for "how to draw a thermometer."
2. Extract the value of the Wind attribute, and use that value as you follow

the instructions for "how to draw a wind compass."
3. (etc.)

• To draw a thermometer, calculate the height of the bar as 50 minus the value you
got from the T attribute, and use that result where you see the italicized text as you
type the following:

<path
 d = "M 25 height 25 90
 A 10 10 0 1 0 35 90
 L 35 height Z"
 style="stroke: none; fill: {$tint};"/>
<path
 d= "M 25 0 25 90 A 10 10 0 1 0 35 90 L 35 0 Z"
 style="stroke: black; fill: none;"/>

• To draw a wind compass (etc.).

Rather than writing our specifications in English and handing them to a human to
perform, we will write the specifications in the XSLT markup format. We'll hand the
XSLT file, along with the OMF file, to the Apache Software Foundation's Xalan
processor, and it will process elements and fill in the blanks to produce an output SVG
file. Here is a quick English-to-XSLT translation guide.

English XSLT
Process an element element <xsl:template match="element">

 228

 <!-- output to produce -->
</xsl:template>

Process any items within the current
element <xsl:apply-templates select="items"/>

Fill in the value of an item <xsl:value-of select="item"/>

Use the value of an item as a variable
named var

<xsl:variable name="var">
 <!-- instructions to produce item's value
-->
</xsl:variable>

12.3.3 Developing an XSL Stylesheet

We'll add details as we proceed, but this gives us more than enough to start. The XSLT
file begins like this:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" [1]
 doctype-public="-//W3C//DTD SVG 1.0//EN"
 doctype-system=
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd"/>

<xsl:template match="Reports"> [2]
<svg width="350" height="200" viewBox="0 0 350 200">
 <defs>
 <path id="wind-line" d="M 40 40 h 25"
 style="stroke: black; fill: none;"/>
 </defs>
 <xsl:apply-templates select="SYN"/> [3]
</svg>
</xsl:template>

[1] The <xsl:output> specifies that the output will be an XML file and that we want it
indented nicely. It also generates the appropriate <!DOCTYPE ...> instruction.

[2] <xsl:template> directs the XSLT processor to generate the specified output
whenever it encounters a <Reports> element. This template will be called only once,
since there's only one such element in the source document. It creates the outermost
<svg> element and a <defs> element for later use.

[3] After outputting the <svg> and <defs>, <xsl:apply-templates> directs the
processor to find any child <SYN> elements and generate whatever its <xsl:template>
element specifies.

And how is the <SYN> element to be processed? Like this:

<xsl:template match="SYN">
 <!-- output the station name as a text element -->
 <text x="10" y="20" style="font-size: 10pt;">

 229

 <xsl:value-of select="@SName"/>
 </text>

 <!-- process any child SYG elements -->
 <xsl:apply-templates select="SYG"/>
</xsl:template>

The <xsl:value-of> inserts the value of the selected item. The preceding @ indicates
that we want the value of an attribute; in this case, the SName attribute. We also want the
timestamp from this element, but it requires special handling, so we'll come back to it
later.

The processor then finds all subordinate <SYG> elements and processes them as our
XSLT document specifies.

In this example, we've only used element and attribute names as the
values of a match or select. In reality, you can put any XPath
expression as a value. XPath is a notation that lets you select parts of
an XML document with extreme precision. For example, while
processing an XHTML document, you could select only the odd
<td> elements that are within <tr> elements that have been set
align="right".

The majority of the work needs to be done when we encounter the <SYG> element, since
it contains the temperature, wind, and visibility attributes. While it would be possible to
output all the relevant SVG within one <xsl:template>, a modular approach is easier to
read and maintain. XSLT lets you create templates that act somewhat like functions; they
don't correspond to any element in the source document, but you may explicitly call them
by name and pass parameters to them. We take advantage of this in the following
template:

<xsl:template match="SYG">
 <!-- pass the temperature to the thermometer -->
 <xsl:call-template name="draw-thermometer">
 <xsl:with-param name="t" select="@T"/>
 </xsl:call-template>

 <!-- draw-wind needs wind speed and direction -->
 <xsl:call-template name="draw-wind">
 <xsl:with-param name="w" select="@Wind"/>
 </xsl:call-template>

 <!-- draw-visibility needs the value of the Vis attribute -->
 <xsl:call-template name="draw-visibility">
 <xsl:with-param name="v">
 <xsl:value-of select="@Vis"/>
 </xsl:with-param>
 </xsl:call-template>
</xsl:template>

 230

If the value of a parameter is an attribute value, the easiest way to set it is with a select.
Another way to set the value is to put the content between a beginning and ending tag, as
is shown in the third call.

Now we can write the template for draw-thermometer. We need to use the passed-in
parameter to determine the height to fill the thermometer, and whether the thermometer
should be filled with red or blue.

<xsl:template name="draw-thermometer">
 <xsl:param name="t">0</xsl:param> [1]
 <xsl:variable name="height" select="50-$t"/> [2]
 <xsl:variable name="tint"> [3]
 <xsl:choose>
 <xsl:when test="$t > 0">red</xsl:when>
 <xsl:otherwise>blue</xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

<g id="thermometer" transform="translate(10, 40)">
 <path
 d = "M 25 {$height} 25 90 A 10 10 0 1 0 35 90 L 35 {$height} Z" [4]
 style="stroke: none; fill: {$tint};"/>

 <path d= "M 25 0 25 90 A 10 10 0 1 0 35 90 L 35 0 Z"
 style="stroke: black; fill: none;"/>

 <g id="thermometer-text"
 style="font-size: 8pt; font-family: sans-serif;">
 <text x="20" y="95" style="text-anchor: end;">-40</text>
 <text x="20" y="55" style="text-anchor: end;">0</text>
 <text x="20" y="5" style="text-anchor: end;">50</text>
 <text x="10" y="110" style="text-anchor: end;">C</text>
 <text x="40" y="95">-40</text>
 <text x="40" y="55">32</text>
 <text x="40" y="5">120</text>
 <text x="50" y="110">F</text>
 <text x="30" y="130" style="text-anchor: middle;">Temp.</text>

 <text x="30" y="145" style="text-anchor: middle;"> [5]
 <xsl:value-of select="$t"/> /
 <xsl:value-of select="round($t div 5 * 9 + 32)"/>
 </text>
 </g>
</g>
</xsl:template>

[1] You can specify the default value for a parameter if none is passed in.

[2] XSLT lets you declare variables for use within a template. These are actually
semi-variables; every time the template gets called, the variable will get set to an initial
value, but for the duration of the template, it cannot be changed further. Note that XSLT
can also do simple calculations such as the one shown in the select attribute, which

 231

figures out the height to which the thermometer should be filled. When referring to a
variable or parameter in an expression, precede its name with a $.

[3] We must set the tint variable conditionally. This is done with the <xsl:choose>
element, which contains one or more <xsl:when> elements. The first one whose test
succeeds is the one whose output goes into the final document. The <xsl:otherwise>
element is a catch-all in case all the preceding tests fail.

In the test, we used the entity reference > for a greater than symbol to avoid
problems with some XSLT processors; if you ever use a less than it must be written as
<.

[4] When referring to parameters or variables in the values of attributes of the output
document, you must enclose them within curly braces. This particular <path> draws the
thermometer, filled to the proper height.

[5] The <text> elements preceding this one are all fixed; this one outputs the
temperature in both degrees Celsius and degrees Fahrenheit. Note the use of div for
division in the formula; this is because the forward slash is already used in XPath to
separate levels of element nesting.

This would be a good time to test what we've done so far. Before we can test, we have to
add four items to the stylesheet. The first two are empty templates to draw the wind
compass and visibility bar; they'll be completed later. The third is an empty template to
handle text nodes. XSLT processors are set up with default templates to ensure that they
will visit all the elements and text in the source document. The default behavior is to send
the text within elements directly to the destination document. In this transformation we
want to throw away the text, so we construct an empty template for text nodes; they will
not appear in the SVG file. Finally, we need the closing </xsl:stylesheet> tag.

<xsl:template name="draw-wind">
 <!-- watch this space -->
</xsl:template>

<xsl:template name="draw-visibility">
 <!-- to be determined -->
</xsl:template>

<xsl:template match="text()"/>
</xsl:stylesheet>

On a Unix system, we invoke the Xalan processor from the command line with the
following shell script. Xalan is the XSLT processor and Xerces is the XML parser. The
resulting graphic, Figure 12-4, shows the station name and the thermometer.

java -cp /usr/local/xmljar/xalan.jar:\
/usr/local/xmljar/xerces.jar\
org.apache.xalan.xslt.Process

 232

 -IN weather.xml -XSL omf.xsl -OUT weather.svg

Figure 12-4. XSL-generated SVG file showing thermometer

You have seen that XSLT can do simple arithmetic; it can also do a reasonable amount of
string manipulation. Here is the XSLT to handle the drawing of the wind compass. It uses
the substring-before and substring-after functions to split the wind information into the
parts that are needed for the drawing.

<xsl:template name="draw-wind">
 <xsl:param name="w" select="0"/>

 <xsl:variable name="dir" [1]
 select="substring-before($w, ',')"/>
 <xsl:variable name="speed"
 select="substring-after($w, ',')"/>

 <xsl:variable name="dir1"> [2]
 <xsl:choose>
 <xsl:when test="contains($dir, '-')">
 <xsl:value-of select="number(substring-before($dir,
 '-'))-90"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="number($dir) - 90"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <xsl:variable name="dir2"> [3]
 <xsl:choose>
 <xsl:when test="contains($dir, '-')">
 <xsl:value-of select="number(substring-after($dir,
 '-'))-90"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="number($dir) - 90"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

<g id="compass" font-size="8pt" font-family="sans-serif"

 233

 transform="translate(110, 70)">
 <circle cx="40" cy="40" r="30" style="stroke: black; fill: none;"/>
 <path
 d= "M 40 10 L 40 14
 M 70 40 L 66 40
 M 40 70 L 40 66
 M 10 40 L 14 40"
 style="stroke: black; fill: none;"/>
 <use transform="rotate({$dir1},40,40)" xlink:href="#wind-line"> [4]
 <xsl:if test="$dir1 != $dir2">
 <xsl:attribute name="stroke-dasharray">3 3</xsl:attribute>
 </xsl:if>
 </use>
 <use transform="rotate({$dir2},40,40)" xlink:href="#wind-line">
 <xsl:if test="$dir1 != $dir2">
 <xsl:attribute name="stroke-dasharray">3 3</xsl:attribute>
 </xsl:if>
 </use>
 <text x="40" y="9" text-anchor="middle">N</text>
 <text x="73" y="44">E</text>
 <text x="40" y="80" text-anchor="middle">S</text>
 <text x="8" y="44" text-anchor="end">W</text>
 <text x="40" y="100" text-anchor="middle">Wind (m/sec)</text>
 <text x="40" y="115" text-anchor="middle">
 <xsl:value-of select="$speed"/> [5]
 </text>
</g>
</xsl:template>

[1] This splits the wind information into a direction and speed by grabbing the substring
before and after the separating comma.

[2] If there is a hyphen in the direction, it must be split into two portions. This sets the
first number, subtracting 90 degrees, since "north" is -90 degrees in SVG. If there's no
hyphen, the first direction is simply offset by -90 degrees. The number function ensures
string data is converted to numeric form after stripping leading and trailing whitespace.

[3] Similar code sets the second direction. You may wonder why we didn't use simpler
code like this:

<xsl:choose>
<xsl:when test="contains($dir,'-')">
 <xsl:variable name="dir1"> ... </xsl:variable>
 <xsl:variable name="dir2"> ... </xsl:variable>
</xsl:when>
<xsl:otherwise>
 <xsl:variable name="dir1"> ... </xsl:variable>
 <xsl:variable name="dir2"> ... </xsl:variable>
</xsl:otherwise>
</xsl:choose>

Because a variable exists only within its enclosing block, this code won't work — the
starting <xsl:when> or <xsl:otherwise> would create the variables, which would

 234

disppear immediately upon encountering the ending </xsl:when> or </xsl:otherwise>.
This is why we have to repeat all the choice code within the variable declarations.

[4] After the boilerplate that creates the circle and the hash marks, we draw both wind
direction lines. If a range of wind directions was specified in the source file, in which
case variables $dir1 and $dir2 will be different, we want the direction lines to be dashed.
We use an <xsl:if> element to test if the directions are unequal. If so, the
<xsl:attribute> will add the named attribute, stroke-dasharray, to the current
element, and the <xsl:attribute>'s content will become the value of that attribute. In
this case, we'll add a stroke-dasharray to the currently open <use> element and give it
a value of 3 3.

If the directions are the same, the <xsl:if> element does nothing, and we get the same
solid line drawn twice.

[5] After the boilerplate text, we insert the wind speed.

Now we construct the XSLT commands to draw the visibility bar. We want to treat
numbers greater than 40,000 as infinity, and we must also handle the special case of the
word INF as a value for the visibility. This requires a three-way choice for an
<xsl:choose> element to set the value of the width for the rectangle that will be drawn
in green.

<xsl:template name="draw-visibility">
 <xsl:param name="v">0</xsl:param>
 <xsl:variable name="width"> [1]
 <xsl:choose>
 <xsl:when test="$v = 'INF'">100</xsl:when>
 <xsl:when test="$v > 40000">100</xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$v * 100.0 div 40000.0"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
<g id="visbar" transform="translate(220,110)"
 font-size="8pt" text-anchor="middle">

 <rect fill="green" stroke="none"
 x="0" y="0" width="{$width}" height="20"/>

 <rect x="0" y="0" width="100" height="20" stroke="black" fill="none"/>

 <path fill="none" stroke="black"
 d="M 25 20 L 25 25 M 50 20 L 50 25 M 75 20 L 75 25"/>

 <text x="0" y="35">0</text>
 <text x="25" y="35">10</text>
 <text x="50" y="35">20</text>
 <text x="75" y="35">30</text>

 235

 <text x="100" y="35">40+</text>
 <text x="50" y="60">
 Visibility (km)
 </text>
 <text x="50" y="75">
 <xsl:value-of select="format-number($v div 1000.0,'0.###')"/>
[2]
 </text>
</g>
</xsl:template>

[1] Setting the width of the area to be filled requires a three-way choice; the visibility
could be the literal INF, a number greater than 40,000, or some other number. This
<xsl:choose> scales the visibility to a maximum width of 100 for the fill.

[2] The visibility is in meters, but we want to show it in kilometers. To show it cleanly,
we use the format-number function, which takes two parameters: the number to format
and the formatting string. The formatting string used here says to print the integer part,
even if it is zero, followed by at most three decimal places. Trailing zeroes will not be
displayed.

Given these specifications, the weather report in Figure 12-5 is taking shape nicely, but it
is still missing the date and time.

Figure 12-5. XSLT-generated SVG file without time data

12.3.4 Extending XSLT in Java

While XSLT contains some arithmetic operations and string functions, they are nowhere
near powerful enough to handle timestamp conversion into the hour and minute of the
day, much less a nicely formatted date string. Luckily, it is possible to write extensions to
XSLT to handle such tasks. You may write extensions in Java, JavaScript, NetRexx,
JPython (the Java version of Python), PerlScript, or any other language that supports the
Bean Scripting Framework. For full details, see
http://xml.apache.org/xalan-j/extensions.html. Since Xalan is our tool of choice, and it is
written in Java, we'll write this extension in Java.

http://xml.apache.org/xalan-j/extensions.html

 236

To use an extension written in Java, you must add the text shown in boldface to the root
element of the XSLT stylesheet. The first line associates the java namespace with calls
to Java extensions. The second line says that XSLT doesn't have to attach that namespace
to any tags it generates.

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:java="http://xml.apache.org/xslt/java"
 exclude-result-prefixes="java">

We then write a class with static methods that take a timestamp as input and return the
information we need. Since the hour and minute will only be used in a numeric context,
we return them as Double. The following code is totally unsurprising; the only "gotcha"
is that the OMF timestamp is measured in seconds since 1 January 1970, and Java's time
and date methods are designed to work with time measured in milliseconds since 1
January 1970.

If you want to put your functions into a package, you may do so. You are not restricted to
static methods, either. An extension may create an instance of a Java object and return it
to be stored in an XSLT variable.

import java.util.Calendar;
import java.util.Date;
import java.text.DateFormat;

public class TimeStampUtils
{
 public static String getDate(String timeStampString)
 {
 DateFormat d = DateFormat.getDateInstance();
 long milliseconds = Long.parseLong(timeStampString) * 1000;
 return
 d.format(new Date(milliseconds));
 }

 public static Double getHour(String timeStampString)
 {
 long milliseconds = Long.parseLong(timeStampString) * 1000;
 Calendar c = Calendar.getInstance();
 c.setTime(new Date(milliseconds));
 return new Double(c.get(Calendar.HOUR_OF_DAY));
 }

 public static Double getMinute(String timeStampString)
 {
 long milliseconds = Long.parseLong(timeStampString) * 1000;
 Calendar c = Calendar.getInstance();
 c.setTime(new Date(milliseconds));
 return new Double(c.get(Calendar.MINUTE));
 }
}

 237

To call one of these methods from XSLT, you give the namespace — in this case java:
— followed by the fully qualified name of the method you wish to call. To retrieve the
date string associated with the timestamp, we add the code in boldface to the definition of
the <SYN> template. We also retrieve the hour and minute, and pass them to a template
that will display the time as text and also draw an analog clock face.

<xsl:template match="SYN">
 <xsl:variable name="tstamp" select="@TStamp"/>
 <text font-size="10pt" x="10" y="20">
 <xsl:value-of select="@SName"/>
 </text>
 <text font-size="10pt" x="345" y="20" text-anchor="end">
 <xsl:value-of select="java:TimeStampUtils.getDate($tstamp)"/>
 </text>

 <xsl:call-template name="draw-time-and-clock">
 <xsl:with-param name="hour"
 select="java:TimeStampUtils.getHour($tstamp)"/>
 <xsl:with-param name="minute"
 select="java:TimeStampUtils.getMinute($tstamp)"/>
 </xsl:call-template>

 <xsl:apply-templates select="SYG"/>
</xsl:template>

Finally, here is the template for drawing the time and clock. The only new item here is
the <xsl:text> element. Its contents, which must be pure text, are placed into the output
document verbatim. We're using it here to avoid problems with whitespace. If the
boldface line in the following listing had been simply the colon that separates the minutes
and hours, the leading tab on that line and the next one would have made their way into
the resultant SVG <text> element, which would have produced extra space around the
colon in the final graphic.

<xsl:template name="draw-time-and-clock">
 <xsl:param name="hour">0</xsl:param>
 <xsl:param name="minute">0</xsl:param>

 <!-- clock face is light yellow from 6 AM to 6 PM, otherwise light
 blue -->
 <xsl:variable name="tint">
 <xsl:choose>
 <xsl:when test="$hour > 6 and $hour < 18">#ffffcc</xsl:when>
 <xsl:otherwise>#ccccff</xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <!-- calculate angles for hour and minute hand of analog clock -->
 <xsl:variable name="hourAngle"
 select="(30 * ($hour mod 12 + $minute div 60)) - 90"/>
 <xsl:variable name="minuteAngle"
 select="($minute * 6) - 90"/>

 238

<text x="345" y="40" style="font-size: 10pt; text-anchor: end;">
 <xsl:value-of select="$hour"/>
 <xsl:text>:</xsl:text>
 <xsl:value-of select="format-number($minute,'00')"/>
</text>
<text font-size="10pt" x="345" y="60" text-anchor="end">
GMT
</text>
<g id="clock" transform="translate(255, 30)">
 <circle cx="20" cy="20" r="20"
 style="fill: {$tint}; stroke: black;"/>
 <line transform="rotate({$minuteAngle}, 20, 20)"
 x1="20" y1="20" x2="38" y2="20" style="stroke: black;"/>
 <line transform="rotate({$hourAngle}, 20, 20)"
 x1="20" y1="20" x2="33" y2="20" style="stroke: black;"/>
</g>
</xsl:template>

When you run this transformation, the classpath that you give to Xalan must include the
directory where your class file lives. In this case, it's in the same directory as the OMF
file and XSL file, so we changed the script to include . in the classpath:

java -cp /usr/local/xmljar/xalan.jar:\
/usr/local/xmljar/xerces.jar:\
.\
org.apache.xalan.xslt.Process\
 -IN weather.xml -XSL omf.xsl -OUT weather.svg

Putting this all together produces Figure 12-6.

Figure 12-6. XSLT-generated SVG file showing complete data

There is room for improvement in this XSLT file. Few people are interested in the
four-letter station code that precedes the station name; it should be eliminated. If the
temperatures are outside the range of -40 to 50 degrees Celsius, as frequently happens in
desert areas or in Antarctica, the thermometer will be filled improperly. If any of the
attributes is missing from the original OMF file, bad things will happen. Numeric
operations on the null string result in a value called "not a number," which displays as
NaN in text, and will cause SVG errors if inserted into a path's description. Finally, if

 239

there is more than one <SYN> element in the document, the XSLT will generate multiple
SVG descriptions of thermometers, compasses, and visibility bars one on top of the other.

These corrections and any improvements to the output are left for the astute reader, who
has been sufficiently astute to purchase XSLT by Doug Tidwell, published by O'Reilly &
Associates. Chapter 8 of that marvelous book also contains an example of using XSLT to
generate SVG from an XML file that is far better-behaved than the one we've used here.
If you're serious about XML, you would be well advised to have this book on your shelf.

 240

Chapter 13. Serving SVG Files

In most of the preceding chapters, we have presented a general view of SVG and have
tried to be application-agnostic. The techniques you've seen can be applied to diagrams
destined for print, for conversion of legacy data to a more transportable format, and, of
course, for web graphics. In this chapter, we will consider the problem of accessing data
in XML format, transforming it to SVG, and then sending it to a client on the Web.

13.1 Serving Web Files -- The Task at Hand

We will present a list of airports on a web page, and let the users select one whose
weather report they wish to see. The request will be sent to a Java servlet, which will
retrieve the information in Weather Observation Markup Format (OMF) and send back a
web page containing a graphic presentation of the data. Though SVG is the most compact
representation — and this is a book about SVG, after all — some users may not have an
SVG plugin for their browsers. Thus, we will offer them a choice of receiving the graphic
in SVG or in one of two rasterized formats: PNG (Portable Network Graphics) or JPG.
We offer JPG for users with older browsers that don't support PNG. The web page is
shown in Figure 13-1.

This example uses a servlet without explaining the servlet mechanism in any great detail.
You can find that information in Java Servlet Programming by Jason Hunter and William
Crawford, published by O'Reilly & Associates.

Figure 13-1. Screenshot of web page

The resulting graphic will be a modified form of the graphic presented in Chapter 12, in
Section 12.3, showing the city name, time, temperature, wind speed and direction, and
visibility. The most important modification is that the graphic will show the local time,
rather than Greenwich Mean Time, which is the format for the original data. Figure 13-2
shows one such result.

Figure 13-2. Screenshot of resulting graphic

 241

13.2 Partitioning the Task

Our task can be broken down into three major subtasks: creating the web page, writing
the servlet itself, and constructing the XSLT file that the servlet will use.

13.2.1 The Request Web Page

Example 13-1 is a listing of the HTML for the web page. The value of each select menu
option consists of the four-letter station ID, city name, and time zone, separated by
vertical bars. The time zone is chosen from the list provided by Java's
java.util.TimeZone.getAvailableIDs() function. The action attribute points to the
servlet running on localhost; you will change this depending on the server, server
software, and servlet container you're using.

Example 13-1. HTML form for requesting OMF information

<html>
<head><title>OMF to SVG</title></head>

<body>
<h2>OMF Graphic Display</h2>
<form method="get"
 action="http://localhost:8080/omf_j/servlet/Weather">
<p>
See weather for:

<select name="call_id">
<option value="----|-----|----">Choose an airport</option>
<option value="SABE|Buenos Aires, Argentina|America/Buenos_Aires">
 Buenos Aires, Argentina
</option>
<option value="KORD|Chicago/O'Hare|America/Chicago">
 Chicago/O'Hare
</option>
<!-- etc. -->
</option>
<option value="KSJC|San Jose|America/Los_Angeles">
 San Jose, California
</option>

 242

<option value="RKSS|Seoul/Kimp'o|Asia/Seoul">
 Seoul/Kimp'o
</option>
<option value="YSSY|Sydney, Australia|Australia/Sydney">
 Sydney, Australia
</option>
</select>
</p>
<p>
Format:
<input type="radio" name="imgtype" value="SVG"
 checked="checked" /> SVG
<input type="radio" name="imgtype" value="JPG" /> JPG
<input type="radio" name="imgtype" value="PNG" /> PNG
<input type="submit" value="Show Weather Graphic" />
</p>
</form>
</body>
</html>

13.2.2 The Weather Servlet

Let us now turn our attention to the Java servlet, Weather, that creates the web page on
which the image will appear. This servlet merely creates HTML; it doesn't create the
image itself. Instead, it will create an <embed> tag (or tag) whose src attribute will
be a reference to the Transform servlet that does the actual transformation. There are two
reasons to do this: First, most applications create a web page with an image rather than
returning an image alone. Second, returning only an image causes caching problems with
some browsers; returning a web page doesn't. The source code for the servlet is listed in
Example 13-2.

Example 13-2. Weather.java, a servlet for creating a web page

import java.io.*;
import java.text.*;
import java.util.*;

import java.net.URLEncoder; [1]
import javax.servlet.*;
import javax.servlet.http.*;

public class Weather extends HttpServlet {

 ResourceBundle rb = [2]
 ResourceBundle.getBundle("TransformFileStrings");

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {

 PrintWriter out = response.getWriter();

 try

 243

 {
 response.setContentType("text/html"); [3]
 response.setHeader("Cache-Control",
 "no-cache, no-store, must-revalidate");
 response.setHeader("Cache-Control",
 "post-check=0, pre-check=0");
 String agent =
 request.getHeader("User-Agent").toLowerCase();

 // netscape chokes on Pragma no-cache so only
 // send it to explorer
 if (agent.indexOf("explorer") > -1){
 response.setHeader("Pragma", "no-cache");
 }
 response.setHeader("Expires",
 "Thu, 01 Dec 1994 16:00:00 GMT");

 String params = request.getParameter("call_id"); [4]
 String referer = request.getHeader("Referer");

 /* if no airport chosen, return to caller */
 if (params.startsWith("----") && (referer != null))
 {
 response.setStatus(response.SC_MOVED_TEMPORARILY);
 response.setHeader("Location", referer);
 return;
 }

 StringTokenizer info = new StringTokenizer(params, "|"); [5]
 info.nextToken(); /* we don't need the station ID */
 String cityName = info.nextToken();

 String imgType = request.getParameter("imgtype");

 String transformURL = rb.getString("transformURL");

 out.println("<html><head><title>" +
 cityName + "</title></head>");
 out.println("<body>");

 if (referer != null) [6]
 {
 out.println("<p><a href=\"" +
 request.getHeader("Referer") +
 "\">Back</p>");
 }

 /*
 * Construct parameters to pass to Transform servlet.
 * The servlet request.getParameter function decoded
 * the information, so we must re-encode it.
 */
 params = "call_id=" + java.net.URLEncoder.encode(params) +
 "&imgtype=" + imgType;

 if (imgType.equals("SVG")) [7]
 {

 244

 out.println("<p><embed width=\"350\" height=\"200\" " +
 "type=\"image/svg+xml\" ");
 out.println(
 "src=\"" + transformURL +
 "?" + params +
 "\" /></p>");
 }
 else
 {
 out.println("<p><img width=\"350\" height=\"200\" ");
 out.println(
 "src=\"" + transformURL +
 "?" + params +
 "\" /></p>");
 }
 out.println("</body></html>");
 }
 catch (Exception e)
 {
 out.println("<html><head><title>Error</title></head>");
 out.println("<body>");
 out.println("<p>Unable to extract information.</p>");
 out.println("</body></html>");
 }
 }

 public void doGet(HttpServletRequest request, [8]
 HttpServletResponse response)
 throws IOException, ServletException
 {
 doPost(request, response);
 }
 }

[1] Include all the connectivity and servlet routines.

[2] For ease of modification, all the file names and URL names for both servlets are
stored in a resource file, which looks like this:

pathName=file:///home/httpd/html/omf_j/

for Weather servlet

transformURL=http://localhost:8080/omf_j/servlet/Transform

for Transform servlet

xslFileName=omf.xsl
svgErrFile=/home/httpd/html/omf_j/err.svg
imgErrFile=/home/httpd/html/omf_j/err.jpg
omfSource=http://url.of.omf.org/get-obs"

 245

[3] The servlet sets the content type for a web page (text/html) and emits an inordinate
amount of information to make sure the page doesn't get cached.

[4] Retrieve the weather station call letters (call_id) and the URL of the web page from
which we were called (the referer). The referrer, whose keyword was misspelled when
the API was created, will be null if the user typed the URL in the browser's location bar
rather than calling the servlet from an actual web page.

[5] Split out the city name from the call_id parameter for use in the <title> element.

[6] If there was a referring page, create a link back to that page.

[7] Create the appropriate <object> or tag. Note that the src attribute is a URL
that will call the Transform servlet, passing on to it all the parameters that we received in
this servlet.

[8] If this servlet is called from a GET request, handle it exactly the same as a POST
request.

13.2.3 The Transform Servlet

When the Weather servlet is invoked, it will create a web page, one of whose tags will in
turn invoke the Transform servlet. This servlet has to retrieve the XML, transform it to
SVG, possibly convert it to JPG or PNG format, and send it to the client, as shown in
Figure 13-3. We want a cross-platform, open source solution, so we will use Apache's
Xalan processor for XSLT, and the Apache Batik project's transcoder.

Figure 13-3. Information flow of Transform servlet

The servlet begins by importing a significant number of classes:

import java.io.*;

 246

import java.text.*;
import java.util.*;

import java.net.URL;
import java.net.URLConnection;
import java.net.URLEncoder;
import java.net.URLDecoder;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

import org.apache.batik.transcoder.image.JPEGTranscoder;
import org.apache.batik.transcoder.image.PNGTranscoder;
import org.apache.batik.transcoder.TranscoderInput;
import org.apache.batik.transcoder.TranscoderOutput;

import org.xml.sax.helpers.XMLReaderFactory;

import org.apache.xalan.templates.OutputProperties;

The init function will read the XSL transformation file, compile it, and store the result in
the class variable xslTemplate. This function is called only once, and the variable will
persist throughout the servlet's lifetime. This means we don't have to re-parse the XSL
file every time the servlet is called.

public class Transform extends HttpServlet {

 ResourceBundle rb =
 ResourceBundle.getBundle("TransformFileStrings");

 private Templates xslTemplate;

 public void init(ServletConfig config) throws ServletException
 {
 String path;
 String title;

 path = rb.getString("pathName");
 title = rb.getString("xslFileName");
 super.init(config);
 try
 {
 //for storing a compiled and resuseable style sheet
 TransformerFactory factory =
 TransformerFactory.newInstance();
 xslTemplate =
 factory.newTemplates(new StreamSource(path + title));
 }
 catch (Exception ex)
 {
 xslTemplate = null;

 247

 }
 }

This is followed by the main routine, doPost. Of particular interest is the code in boldface,
which passes the time zone string as a parameter to the XSLT file.

public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
{
 StreamSource xmlInput;
 StreamResult svgOutput;
 StringWriter svgWriter;
 String svgString;
 String stationID = "";
 String cityName = "";
 String timeZoneString ="";
 String retrievedXML = "";

 /* If init failed, exit immediately */
 if (xslTemplate == null)
 {
 errorExit(request, response, "No template");
 return;
 }

 try
 {
 /* Split out information from the parameter */
 String temp;
 temp = request.getParameter("call_id");
 StringTokenizer info = new StringTokenizer(temp, "|");
 stationID = info.nextToken();
 cityName = info.nextToken();
 timeZoneString = info.nextToken();
 }
 catch (Exception e)
 {
 errorExit(request, response, "Can't split parameters");
 }

 /*
 * The OMF source that we are using returns
 * an SVG document beginning with a <!DOCTYPE if there
 * is no error, or an HTML form document if it got
 * invalid input.
 */
 retrievedXML = getOMFReports(request, cityName, stationID);
 if (retrievedXML != null && retrievedXML.startsWith("<!DOC"))
 {
 try
 {
 xmlInput = new StreamSource(
 new StringReader(retrievedXML)
);

 248

 /*
 * Create an XSLT Transformer based on our template,
 * make it output UTF, and pass it the time zone
 */
 Transformer transformer = xslTemplate.newTransformer();
 transformer.setOutputProperty("encoding", "UTF-8");
 transformer.setParameter("timeZone", timeZoneString);

 /*
 * Transform the XML to SVG as one long
 * string.
 */
 svgWriter = new StringWriter(2048);
 svgOutput = new StreamResult(svgWriter);
 transformer.transform(
 xmlInput,
 svgOutput
);

 svgString = svgWriter.toString();

 /*
 * Send back the appropriate output given the
 * image type that the user requested.
 */
 if (request.getParameter("imgtype").equals("JPG"))
 {
 emitJPG(request, response, svgString);
 }
 else if (request.getParameter("imgtype").equals("PNG"))
 {
 emitPNG(request, response, svgString);
 }
 else
 {
 emitSVG(request, response, svgString);
 }
 }
 catch (Exception e)
 {
 errorExit(request, response, e.getMessage());
 }
 }
 else
 {
 errorExit(request, response, retrievedXML);
 }
}

/*
 * Treat get and post equivalently.
 */
public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
{
 doPost(request, response);

 249

}

Here's the routine that accesses the OMF source. The particular source we're using will
only accept POST requests; this code shows you how to do them. The OMF source we
used while developing this chapter returns an XML file starting with a <!DOCTYPE ... >
if the input data is valid; otherwise it returns an HTML page with an error message.

private String getOMFReports(HttpServletRequest request,
 String cityName, String stationID)
{
 URL url;
 URLConnection urlConn;

 DataOutputStream output;
 DataInputStream input;

 String retrievedReport = null;

 try
 {
 /*
 * Open a URL connection to the OMF source URL
 */
 url = new URL(rb.getString("omfSource"));
 urlConn = url.openConnection();

 /*
 * We need to both send (output)
 * and receive (input) data
 * with this connection
 */
 urlConn.setDoOutput (true);
 urlConn.setDoInput (true);

 // Don't use any cached values
 urlConn.setUseCaches (false);

 // Specify the content type.
 urlConn.setRequestProperty("Content-Type",
 "application/x-www-form-urlencoded");

 /*
 * No user interaction such as authentication
 * dialogs is needed here.
 */
 urlConn.setAllowUserInteraction(false);

 /*
 * Write the POST data; this OMF source
 * is ordinarily called from an HTML form;
 * we are filling in the call_id field and
 * faking the "Retrieve" submit button
 */
 output = new DataOutputStream (urlConn.getOutputStream ());
 String content = "do-retrieve=Retrieve&call_id=" +

 250

 URLEncoder.encode(stationID);
 output.writeBytes (content);
 output.flush ();
 output.close ();

 /*
 * Get response data, appending it to a
 * string buffer.
 */
 input = new DataInputStream(urlConn.getInputStream ());

 StringBuffer strBuf = new StringBuffer(2048);
 String str;
 while (null != ((str = input.readLine())))
 {
 strBuf.append(str);
 strBuf.append("\n");
 }

 /*
 * If the result begins with <!DOCTYPE, it's good;
 * otherwise, it's not.
 */
 retrievedReport = strBuf.toString();
 if (!retrievedReport.startsWith("<!DOCTYPE"))
 {
 retrievedReport = "No reports available for " +
 cityName + ".";
 }
 input.close();
 }
 catch (Exception e)
 {
 /*
 * We can get an exception when the connection
 * hits end of file; this test makes sure we
 * only report true errors.
 */
 if (e.getMessage() != null)
 {
 retrievedReport = null;
 }
 }
 return retrievedReport;
}

The following routine is a utility routine for sending header information back to the
caller.

/*
 * Send back a header of the given contentType;
 * add lots of checks to avoid caching.
 */
public void headerInfo(HttpServletRequest request,
 HttpServletResponse response, String contentType)
{

 251

 response.setContentType(contentType);
 response.setHeader("Cache-Control",
 "no-cache, no-store, must-revalidate");
 response.setHeader("Cache-Control",
 "post-check=0, pre-check=0");

 /*
 * Netscape has problems with Pragma: no-cache,
 * so only send it to Explorer.
 */
 String agent = request.getHeader("User-Agent").toLowerCase();
 if (agent.indexOf("explorer") > -1){
 response.setHeader("Pragma", "no-cache");
 }
 response.setHeader("Expires", "Thu, 01 Dec 1994 16:00:00 GMT");
}

Sending the SVG is trivial; it's already ready and waiting in a string.

public void emitSVG (HttpServletRequest request,
 HttpServletResponse response, String svgString)
{
 headerInfo(request, response, "image/svg+xml");
 try {

 response.getWriter().write(svgString);
 response.getWriter().flush();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}

Sending back the JPG and PNG requires one extra step: invoking the appropriate Batik
transcoder to convert the SVG into an array of bytes, which we send directly to the
response's output stream. response.getWriter() is used for text;
response.getOutputStream() is used for binary data.

public void emitJPG(HttpServletRequest request,
 HttpServletResponse response, String svgString)
{
 headerInfo(request, response, "image/jpeg");

 JPEGTranscoder t = new JPEGTranscoder();
 t.addTranscodingHint(JPEGTranscoder.KEY_QUALITY,
 new Float(.8));

 TranscoderInput input =
 new TranscoderInput(new StringReader(svgString));
 try {
 TranscoderOutput output =
 new TranscoderOutput(response.getOutputStream());
 t.transcode(input, output);
 response.getOutputStream().close();

 252

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}

public void emitPNG (HttpServletRequest request,
 HttpServletResponse response, String svgString)
{
 headerInfo(request, response, "image/png");

 PNGTranscoder t = new PNGTranscoder();

 TranscoderInput input =
 new TranscoderInput(new StringReader(svgString));
 try {
 TranscoderOutput output =
 new TranscoderOutput(response.getOutputStream());
 t.transcode(input, output);
 response.getOutputStream().close();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}

We are now left with one interesting problem — handling errors. In the Weather servlet,
we were creating an HTML page, so the error trapping simply generated a different
HTML page with the error message on it. In this case, though, the servlet is expecting
image data, and sending back HTML text won't do. The client wants image data, so that's
what we'll give it. If the user requested an SVG graphic, we'll send back the following
"error image" from a text file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg viewBox="0 0 350 200" height="200" width="350">
 <rect x="1" y="1" width="348" height="198"
 style="fill: none; stroke: black;"/>
 <text x="175" y="112"
 style="font-size: 18pt; text-anchor: middle;">
 Unable to retrieve data.
 </text>
</svg>

If the user requested a JPG or PNG image, we'll send back a JPG version of the error
image, shown at half size in Figure 13-4. We send back a JPG image because that format
is supported by even the oldest browsers.

Figure 13-4. Screenshot of error image

 253

Here's the code. Again, the SVG, being text, is sent to response.getWriter(), and the
JPG, being binary, is sent to response.getOutputStream(). If there's any error during
this process, we log the error and let the bits fall where they may.

public void errorExit(HttpServletRequest request,
 HttpServletResponse response, String msg)
{
 try {
 if (request.getParameter("imgtype").equals("SVG"))
 {
 response.setContentType("image/svg+xml");
 String title = rb.getString("svgErrFile");
 BufferedReader input =
 new BufferedReader(new FileReader(title));
 String str;
 while (null != ((str = input.readLine())))
 {
 response.getWriter().write(str);
 }
 input.close();
 response.getWriter().close();
 }
 else
 {
 response.setContentType("image/jpeg");
 String title = rb.getString("imgErrFile");
 byte [] buffer = new byte[8192];

 FileInputStream input =
 new FileInputStream(title);
 while (input.read(buffer) >= 0)
 {
 response.getOutputStream().write(buffer);
 }
 input.close();
 response.getOutputStream().close();
 }
 }
 catch (Exception e)
 {
 if (e.getMessage() != null)
 {
 log("Cannot output error image");
 log(e.getMessage());
 }
 }
}

 254

13.2.4 The XSLT File

The XSLT file used to transform the OMF records to SVG has one major enhancement; it
must receive the parameter that was passed to it in the doPost method. Note that we give
a default value of UTC so that the result will show up in Greenwich Mean Time if no
parameter is passed to the XSLT file.

<xsl:param name="timeZone" select="UTC"/>

The XSLT extensions we wrote in Chapter 12 in Section 12.3.4 must also be modified to
use the time zone parameter when returning the date and time. These extensions are in the
XSLTUtils.java file, which will be compiled and stored in a file named XSLTUtils.jar
(rather than TimeUtils.class as in the original example).

import java.util.Calendar;
import java.util.Date;
import java.util.TimeZone;
import java.text.DateFormat;

public class XSLTUtils
{

 public static String getDate(String timeStampString,
 String timeZoneString)
 {
 DateFormat d = DateFormat.getDateInstance();
 d.setTimeZone(TimeZone.getTimeZone(timeZoneString));
 long milliseconds = Long.parseLong(timeStampString) * 1000;
 return
 d.format(new Date(milliseconds));
 }

 public static Double getHour(String timeStampString,
 String timeZoneString)
 {
 long milliseconds = Long.parseLong(timeStampString) * 1000;
 Calendar c = Calendar.getInstance(
 TimeZone.getTimeZone(timeZoneString));
 c.setTime(new Date(milliseconds));
 return new Double(c.get(Calendar.HOUR_OF_DAY));
 }

 public static Double getMinute(String timeStampString,
 String timeZoneString)
 {
 long milliseconds = Long.parseLong(timeStampString) * 1000;
 Calendar c = Calendar.getInstance(
 TimeZone.getTimeZone(timeZoneString));
 c.setTime(new Date(milliseconds));
 return new Double(c.get(Calendar.MINUTE));
 }

}

 255

The XSLT can then call upon these functions when drawing the clock and date.

<text font-size="10pt" x="345" y="20" text-anchor="end">
 <xsl:value-of select="java:XSLTUtils.getDate($tstamp, $timeZone)"/>
</text>

<xsl:call-template name="draw-time-and-clock">
 <xsl:with-param name="hour"
 select="java:XSLTUtils.getHour($tstamp, $timeZone)"/>
 <xsl:with-param name="minute"
 select="java:XSLTUtils.getMinute($tstamp, $timeZone)"/>
</xsl:call-template>

13.3 Setting up the Server

We chose the Tomcat servlet container implementation from the Apache Software
Foundation, found at http://jakarta.apache.org/index.html, to run these servlets. As with
all the other software mentioned in this appendix, it is cross-platform and open source. It
can run as a standalone server, serving web pages, servlets, and JavaServer Pages. It can
also be used in conjunction with the Apache web server, Microsoft's Internet Information
Server (IIS), Microsoft's Personal Web Server, or Netscape's Netscape Enterprise
Server.[1]

[1] This isn't the only choice available. You can also use a Java-based delivery framework
such as Cocoon, available from the Apache Software Foundation at
http://xml.apache.org/cocoon/, or the Perl-based AxKit system, available at
http://217.158.50.178.

We did our testing with Tomcat running in standalone mode on a Linux system. We
changed the tomcat.sh shell script as follows:

• We explicitly set the JAVA_HOME and TOMCAT_HOME variables:
• JAVA_HOME=/usr/local/j2sdk1.3.0
• TOMCAT_HOME=/usr/local/jakarta-tomcat
• To run our servlets, Tomcat's classpath needs access to Xalan and Xerces for the

XSLT transformations, and it also needs access to the Batik .jar files. The normal
Tomcat classpath setup is also in conf/tomcat.sh. It saves your current CLASSPATH,
creates a new one with the paths that it wants, and then re-appends the classpath
that you had specified. We modified that code to create a new classpath and
entirely ignore the old one, which had some duplications and many unnecessary
paths. Our changes are shown in boldface.

• oldCP=$CLASSPATH
• unset CLASSPATH
•
• #
• # The latest versions of Xalan and Xerces which we
• # want to use must come first!
• #

http://jakarta.apache.org/index.html
http://xml.apache.org/cocoon/
http://217.158.50.178/

 256

• CLASSPATH=/usr/local/xmljar/xalan.jar:/usr/local/xmljar/xerces.j
ar

• CLASSPATH=${CLASSPATH}:/usr/local/xmljar/bsf.jar
• CLASSPATH=${CLASSPATH}:/usr/local/xmljar/XSLTUtils.jar
•
• #
• # Add all the .jar files in the Batik library
• # to the classpath
• #
• for i in /usr/local/batik/lib/* ; do
• CLASSPATH=${CLASSPATH}:$i
• done
•
• #
• # Add all the .jar files in Tomcat's library directory
• # to the classpath. The "else" branch will never be
• # taken, but it's needed in Tomcat's code, so we decided
• # to leave it intact here
• #
• for i in ${TOMCAT_HOME}/lib/* ; do
• if ["$CLASSPATH" != ""]; then
• CLASSPATH=${CLASSPATH}:$i
• else
• CLASSPATH=$i
• fi
• done
•
• if [-f ${JAVA_HOME}/lib/tools.jar] ; then
• # We are probably in a JDK1.2 environment
• CLASSPATH=${CLASSPATH}:${JAVA_HOME}/lib/tools.jar
• fi
•
• # Backdoor classpath setting for development purposes when all

classes
• # are compiled into a /classes dir and are not yet jarred.
• if [-d ${TOMCAT_HOME}/classes]; then
• CLASSPATH=${TOMCAT_HOME}/classes:${CLASSPATH}
• fi
•
•
• # Ignore old classpath altogether
• #
• #if ["$oldCP" != ""]; then
• # CLASSPATH=${CLASSPATH}:${oldCP}
• #fi
• We added a new context to the conf/server.xml so we could put our files in a

directory other than the webapps/examples directory. We set reloadable to true
because we were doing a lot of recompiling and testing. In a production

 257

environment you would probably want to set this to false to avoid the overhead
of checking for updates every time a request comes to the server.

• <Context path="/omf_j"
• docBase="/home/httpd/html/omf_j"
• crossContext="false"
• debug="0"
• reloadable="true" >
• <Context>

 258

Appendix A. The XML You Need for SVG

The purpose of this appendix is to introduce you to XML. A knowledge of XML is
essential if you wish to write SVG documents directly rather than having them generated
by some graphics utility.

If you're already acquainted with XML, you don't need to read this appendix. If not, read
on. The general overview of XML given in this appendix should be more than sufficient
to enable you to work with the SVG documents that you will create. For further
information about XML, the O'Reilly books, Learning XML by Erik T. Ray and XML in a
Nutshell by Elliotte Rusty Harold and W. Scott Means, are invaluable guides, as is the
weekly online magazine XML.com.

Note that this appendix makes frequent reference to the formal XML 1.0 specification,
which can be used for further investigation of topics that fall outside the scope of SVG.
Readers are also directed to the "Annotated XML Specification," written by Tim Bray
and published online at http://XML.com/, which provides illuminating explanation of the
XML 1.0 specification; and to "What is XML?" by Norm Walsh, also published on
XML.com.

A.1 What Is XML?

XML, the Extensible Markup Language, is an Internet-friendly format for data and
documents, invented by the World Wide Web Consortium (W3C). The "Markup" denotes
a way of expressing the structure of a document within the document itself. XML has its
roots in a markup language called SGML (Standard Generalized Markup Language),
which is used in publishing and shares this heritage with HTML. XML was created to do
for machine-readable documents on the Web what HTML did for human-readable
documents — that is, provide a commonly agreed-upon syntax so that processing the
underlying format becomes a commodity and documents are made accessible to all users.

Unlike HTML, though, XML comes with very little predefined. HTML developers are
accustomed both to the notion of using angle brackets < > for denoting elements (that is,
syntax), and also to the set of element names themselves (such as head, body, etc.). XML
shares only the former feature (i.e., the notion of using angle brackets for denoting
elements). Unlike HTML, XML has no predefined elements, but is merely a set of rules
that lets you write other languages like HTML.[A] Because XML defines so little, it is easy
for everyone to agree to use the XML syntax, and then to build applications on top of it.
It's like agreeing to use a particular alphabet and set of punctuation symbols, but not
saying which language to use. However, if you're coming to XML from an HTML
background, then prepare yourself for the shock of having to choose what to call your
tags!

http://xml.com/
http://xml.com/
http://xml.com/

 259

[A] To clarify XML's relationship with SGML: XML is an SGML subset. By contrast,
HTML is an SGML application. SVG uses XML to express its operations and thus is an
XML application.

Knowing that XML's roots lie with SGML should help you understand some of XML's
features and design decisions. Note that, although SGML is essentially a
document-centric technology, XML's functionality also extends to data-centric
applications, including SVG. Commonly, data-centric applications do not need all the
flexibility and expressiveness that XML provides and limit themselves to employing only
a subset of XML's functionality.

A.2 Anatomy of an XML Document

The best way to explain how an XML document is composed is to present one. The
following example shows an XML document you might use to describe two authors:

<?xml version="1.0" encoding="us-ascii"?>
<authors>
 <person id="lear">
 <name>Edward Lear</name>
 <nationality>British</nationality>
 </person>
 <person id="asimov">
 <name>Isaac Asimov</name>
 <nationality>American</nationality>
 </person>
 <person id="mysteryperson"/>
</authors>

The first line of the document is known as the XML declaration. This tells a processing
application which version of XML you are using (the version indicator is mandatory) and
which character encoding you have used for the document. In the previous example, the
document is encoded in ASCII. (The significance of character encoding is covered later
in this chapter.) If the XML declaration is omitted, a processor will make certain
assumptions about your document. In particular, it will expect it to be encoded in UTF-8,
an encoding of the Unicode character set. However, it is best to use the XML declaration
wherever possible, both to avoid confusion over the character encoding and to indicate to
processors which version of XML you're using.

A.2.1 Elements and Attributes

The second line of the example begins an element, which has been named "authors." The
contents of that element include everything between the right angle bracket (>) in
<authors> and the left angle bracket (<) in </authors>. The actual syntactic constructs
<authors> and </authors> are often referred to as the element start tag and end tag,
respectively. Do not confuse tags with elements! Note that elements may include other
elements, as well as text. An XML document must contain exactly one root element,

 260

which contains all other content within the document. The name of the root element
defines the type of the XML document.

Elements that contain both text and other elements simultaneously are classified as mixed
content. The SVG <text> element is such an element; it can contain text and <tspan>
elements.

The sample "authors" document uses elements named person to describe the authors
themselves. Each person element has an attribute named id. Unlike elements, attributes
can only contain textual content. Their values must be surrounded by quotes. Either
single quotes (') or double quotes (") may be used, as long as you use the same kind of
closing quote as the opening one.

Within XML documents, attributes are frequently used for metadata (i.e., "data about
data") — describing properties of the element's contents. This is the case in our example,
where id contains a unique identifier for the person being described.

As far as XML is concerned, it does not matter in what order attributes are presented in
the element start tag. For example, these two elements contain exactly the same
information as far as an XML 1.0 conformant processing application is concerned:

<animal name="dog" legs="4"/>
<animal legs="4" name="dog"/>

On the other hand, the information presented to an application by an XML processor on
reading the following two lines will be different for each animal element because the
ordering of elements is significant:

<animal><name>dog</name><legs>4</legs></animal>
<animal><legs>4</legs><name>dog</name></animal>

XML treats a set of attributes like a bunch of stuff in a bag — there is no implicit
ordering — while elements are treated like items on a list, where ordering matters.

New XML developers frequently ask when it is best to use attributes to represent
information and when it is best to use elements. As you can see from the "authors"
example, if order is important to you, then elements are a good choice. In general, there is
no hard-and-fast "best practice" for choosing whether to use attributes or elements.

The final author described in our document has no information available. All we know
about this person is his or her ID, mysteryperson. The document uses the XML shortcut
syntax for an empty element. The following is a reasonable alternative:

<person id="mysteryperson"></person>

 261

A.2.2 Name Syntax

XML 1.0 has certain rules about element and attribute names. In particular:

• Names are case-sensitive: e.g., <person/> is not the same as <Person/>.
• Names beginning with "xml" (in any permutation of uppercase or lowercase) are

reserved for use by XML 1.0 and its companion specifications.
• A name must start with a letter or an underscore, not a digit, and may continue

with any letter, digit, underscore, or period.[B]

[B] Actually, a name may also contain a colon, but the colon is used to delimit a
namespace prefix and is not available for arbitrary use. Knowledge of namespaces
is not required for understanding SVG, but for more information, see Tim Bray's
"XML Namespaces by Example," published at http://www.xml.com/pub/a/1999/01/namespaces.html.

A precise description of names can be found in Section 2.3 of the XML 1.0 specification,
at http://www.w3.org/TR/REC-xml#sec-common-syn.

A.2.3 Well-Formed

An XML document that conforms to the rules of XML syntax is known as well-formed.
At its most basic level, well-formedness means that elements should be properly matched,
and all opened elements should be closed. A formal definition of well-formedness can be
found in Section 2.1 of the XML 1.0 specification, at
http://www.w3.org/TR/REC-xml#sec-well-formed. Table A-1 shows some XML
documents that are not well-formed.

Table A-1. Examples of poorly formed XML documents
Document Reason why it's not well-formed

<foo>
 <bar>
 </foo>
</bar>

The elements are not properly nested because foo is closed while inside its child element
bar.

<foo>
 <bar>
</foo>

The bar element was not closed before its parent, foo, was closed.

<foo baz>
</foo>

The baz attribute has no value. While this is permissible in HTML (e.g., <table
border>), it is forbidden in XML.

<foo
baz=23>
</foo>

The baz attribute value, 23, has no surrounding quotes. Unlike HTML, all attribute
values must be quoted in XML.

A.2.4 Comments

As in HTML, it is possible to include comments within XML documents. XML
comments are intended to be read only by people. With HTML, developers have
occasionally employed comments to add application-specific functionality. For example,

http://www.xml.com/pub/a/1999/01/namespaces.html
http://www.w3.org/TR/REC-xml#sec-common-syn
http://www.w3.org/TR/REC-xml#sec-well-formed

 262

the server-side include functionality of most web servers uses instructions embedded in
HTML comments. XML provides other means of indicating application processing
instructions,[C] so comments should not be used for any purpose other than those for
which they were intended.

[C] A discussion of processing instructions (PIs) is outside the scope of this book.
For more information on PIs, see Section 2.6 of the XML 1.0 specification, at
http://www.w3.org/TR/REC-xml#sec-pi.

The start of a comment is indicated with <!--, and the end of the comment with -->.
Any sequence of characters, aside from the string --, may appear within a comment.

Comments tend to be used more in XML documents intended for human consumption
than those intended for machine consumption. The <desc> and <title> elements in
SVG obviate much of the need for comments.

A.2.5 Entity References

Another feature of XML that is occasionally useful when writing SVG documents is the
mechanism for escaping characters.

Because some characters have special significance in XML, there needs to be a way to
represent them. For example, in some cases the < symbol might really be intended to
mean "less than" rather than to signal the start of an element name. Clearly, just inserting
the character without any escaping mechanism would result in a poorly formed document
because a processing application would assume you were starting another element.
Another instance of this problem is needing to include both double quotes and single
quotes simultaneously in an attribute's value. Here's an example that illustrates both these
difficulties:

<badDoc>
 <para>
 I'd really like to use the < character
 </para>
 <note title="On the proper 'use' of the " character"/>
</badDoc>

XML avoids this problem by the use of the predefined entity reference. The word entity
in the context of XML simply means a unit of content. The term entity reference means
just that, a symbolic way of referring to a certain unit of content. XML predefines entities
for the following symbols: left angle bracket (<), right angle bracket (>), apostrophe ('),
double quote ("), and ampersand (&).

An entity reference is introduced with an ampersand (&), which is followed by a name
(using the word "name" in its formal sense, as defined by the XML 1.0 specification), and
terminated with a semicolon (;). Table A-2 shows how the five predefined entities can be
used within an XML document.

http://www.w3.org/TR/REC-xml#sec-pi

 263

Table A-2. Predefined entity references in XML 1.0
Literal character Entity reference

< <
> >
' '
" "
& &

Here's our problematic document revised to use entity references:

<badDoc>
 <para>
 I'd really like to use the < character
 </para>
 <note title="On the proper 'use' of the "character"/>
</badDoc>

Being able to use the predefined entities is all you need for SVG; in general, entities are
provided as a convenience for human-created XML. XML 1.0 allows you to define your
own entities and use entity references as "shortcuts" in your document. Section 4 of the
XML 1.0 specification, available at http://www.w3.org/TR/REC-xml#sec-physical-struct,
describes the use of entities.

A.2.6 Character References

You are likely to find character references in the context of SVG documents. Character
references allow you to denote a character by its numeric position in Unicode character
set (this position is known as its code point). Table A-3 contains a few examples that
illustrate the syntax.

Table A-3. Example character references in UTF-8
Actual character Character reference

1 0
A A
Ñ; Ñ
® ®

Note that the code point can be expressed in decimal or, with the use of x as a prefix, in
hexadecimal.

A.3 Character Encodings

The subject of character encodings is frequently a mysterious one for developers. Most
code tends to be written for one computing platform and, normally, to run within one

http://www.w3.org/TR/REC-xml#sec-physical-struct

 264

organization. Although the Internet is changing things quickly, most of us have never had
cause to think too deeply about internationalization.

XML, designed to be an Internet-friendly syntax for information exchange, has
internationalization at its very core. One of the basic requirements for XML processors is
that they support the Unicode standard character encoding. Unicode attempts to include
the requirements of all the world's languages within one character set. Consequently, it is
very large!

A.3.1 Unicode Encoding Schemes

Unicode 3.0 has more than 57,700 code points, each of which corresponds to a
character.[D] If one were to express a Unicode string by using the position of each
character in the character set as its encoding (in the same way as ASCII does), expressing
the whole range of characters would require 4 octets[E] for each character. Clearly, if a
document is written in 100 percent American English, it will be four times larger than
required — all the characters in ASCII fitting into a 7-bit representation. This places a
strain both on storage space and on memory requirements for processing applications.

[D] You can obtain charts of all these characters online by visiting
http://www.unicode.org/charts/.

[E] An octet is a string of 8 binary digits, or bits. A byte is commonly, but not
always, considered the same thing as an octet.

Fortunately, two encoding schemes for Unicode alleviate this problem: UTF-8 and
UTF-16. As you might guess from their names, applications can process documents in
these encodings in 8- or 16-bit segments at a time. When code points are required in a
document that cannot be represented by one chunk, a bit-pattern is used that indicates that
the following chunk is required to calculate the desired code point. In UTF-8 this is
denoted by the most significant bit of the first octet being set to 1.

This scheme means that UTF-8 is a highly efficient encoding for representing languages
using Latin alphabets, such as English. All of the ASCII character set is represented
natively in UTF-8 — an ASCII-only document and its equivalent in UTF-8 are
byte-for-byte identical.

This knowledge will also help you debug encoding errors. One frequent error arises
because of the fact that ASCII is a proper subset of UTF-8 — programmers get used to
this fact and produce UTF-8 documents, but use them as if they were ASCII. Things start
to go awry when the XML parser processes a document containing, for example,
characters such as Á. Because this character cannot be represented using only one octet in
UTF-8, this produces a two-octet sequence in the output document; in a non-Unicode
viewer or text editor, it looks like a couple of characters of garbage.

http://www.unicode.org/charts/

 265

A.3.2 Other Character Encodings

Unicode, in the context of computing history, is a relatively new invention. Native
operating system support for Unicode is by no means widespread. For instance, although
Windows NT offers Unicode support, Windows 95 and 98 do not have it.

XML 1.0 allows a document to be encoded in any character set registered with the
Internet Assigned Numbers Authority (IANA). European documents are commonly
encoded in one of the ISO Latin character sets, such as ISO-8859-1. Japanese documents
commonly use Shift-JIS, and Chinese documents use GB2312 and Big 5.

A full list of registered character sets may be found at
http://www.iana.org/assignments/character-sets.

XML processors are not required by the XML 1.0 specification to support any more than
UTF-8 and UTF-16, but most commonly support other encodings, such as US-ASCII and
ISO-8859-1. Although most SVG transactions are currently conducted in ASCII (or the
ASCII subset of UTF-8), there is nothing to stop SVG documents from containing, say,
Korean text. You will, however, probably have to dig into the encoding support of your
computing platform to find out if it is possible for you to use alternate encodings.

A.4 Validity

In addition to well-formedness, XML 1.0 offers another level of verification, called
validity. To explain why validity is important, let's take a simple example. Imagine you
invented a simple XML format for your friends' telephone numbers:

<phonebook>
 <person>
 <name>Albert Smith</name>
 <number>123-456-7890</number>
 </person>
 <person>
 <name>Bertrand Jones</name>
 <number>456-123-9876</number>
 </person>
</phonebook>

Based on your format, you also construct a program to display and search your phone
numbers. This program turns out to be so useful, you share it with your friends. However,
your friends aren't so hot on detail as you are, and try to feed your program this phone
book file:

<phonebook>
 <person>
 <name>Melanie Green</name>
 <phone>123-456-7893</phone>
 </person>
</phonebook>

http://www.iana.org/assignments/character-sets

 266

Note that, although this file is perfectly well-formed, it doesn't fit the format you
prescribed for the phone book, and you find you need to change your program to cope
with this situation. If your friends had used number as you did to denote the phone
number, and not phone, there wouldn't have been a problem. However, as it is, this
second file is not a valid phonebook document.

For validity to be a useful general concept, we need a machine-readable way of saying
what a valid document is; that is, which elements and attributes must be present and in
what order. XML 1.0 achieves this by introducing document type definitions (DTDs). For
the purposes of SVG, you don't need to know much about DTDs. Rest assured that SVG
does have a DTD, and it spells out in detail exactly which combinations of elements and
attributes make up a valid document.

A.4.1 Document Type Definitions (DTDs)

The purpose of a DTD is to express the allowed elements and attributes in a certain
document type and to constrain the order in which they must appear within that document
type. A DTD is generally composed of one file, which contains declarations defining the
element types and attribute lists. (In theory, a DTD may span more than one file; however,
the mechanism for including one file inside another — parameter entities — is outside
the scope of this book.) It is common to mistakenly conflate element and element types.
The distinction is that an element is the actual instance of the structure as found in an
XML document, whereas the element type is the kind of element that the instance is.

A.4.2 Putting It Together

What is important to you is knowing how to link a document to its defining DTD. This is
done with a document type declaration <!DOCTYPE ...>, inserted at the beginning of the
XML document, after the XML declaration in our fictitious example:

<?xml version="1.0" encoding="us-ascii"?>
<!DOCTYPE authors SYSTEM "http://example.com/authors.dtd">
<authors>
 <person id="lear">
 <name>Edward Lear</name>
 <nationality>British</nationality>
 </person>
 <person id="asimov">
 <name>Isaac Asimov</name>
 <nationality>American</nationality>
 </person>
 <person id="mysteryperson"/>
</authors>

This example assumes the DTD file has been placed on a web server at example.com.
Note that the document type declaration specifies the root element of the document, not
the DTD itself. You could use the same DTD to define "person," "name," or "nationality"
as the root element of a valid document. Certain DTDs, such as the DocBook DTD for

 267

technical documentation,[F] use this feature to good effect, allowing you to provide the
same DTD for multiple document types.

[F] See http://www.docbook.org.

A validating XML processor is obliged to check the input document against its DTD. If it
does not validate, the document is rejected. To return to the phone book example, if your
application validated its input files against a phone book DTD, you would have been
spared the problems of debugging your program and correcting your friend's XML
because your application would have rejected the document as being invalid. Most of the
programs that read SVG files have a validating XML processor built into them to assure
they have valid input (and to keep you honest!). The kinds of XML processors that are
available are discussed in Section A.6.

A.5 XML Namespaces

XML 1.0 lets developers create their own elements and attributes, but leaves open the
potential for overlapping names. "Title" in one context may mean something entirely
different than "Title" in a different context. The Namespaces in XML specification
(which can be found at http://www.w3.org/TR/REC-xml-names/) provides a mechanism
developers can use to identify particular vocabularies using Uniform Resource Identifiers
(URIs).

SVG uses the URI http://www.w3.org/2000/svg for its namespace. The URI is just an
identifier — opening that page in a Web browser reveals some links to the SVG, XML
1.0, and Namespaces in XML specifications. Programs processing documents with
multiple vocabularies can use the namespaces to figure out which vocabulary they are
handling at any given point in a document.

SVG applies the namespace in the root element of SVG documents:

<svg xmlns="http://www.w3.org/2000/svg" width="100" height="100">
....
</svg>

The xmlns attribute, which defines the namespace, is actually provided as a default value
by the SVG DTD, so the declaration isn't required to appear in SVG documents. (If it
does appear, it must have the exact value shown earlier.) The namespace declaration
applies to all of the elements contained by the element in which the declaration appears,
including the containing element. This means that the element named "svg" is in the
namespace http://www.w3.org/2000/svg.

SVG uses the "default namespace" for its content, using the SVG element names without
any prefix. Namespaces can also be applied using prefixes, as shown here:

<svgns:svg xmlns:svgns="http://www.w3.org/2000/svg"
 width="100" height="100">

http://www.docbook.org/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/2000/svg
http://www.w3.org/2000/svg

 268

....
</svgns:svg>

In this case, the namespace URI http://www.w3.org/2000/svg would apply to all elements
using a prefix of "svgns". The SVG 1.0 DTD won't validate against such documents, but
future versions of SVG may support this feature. Appendix F shows examples of how to
use namespaces to integrate SVG with other XML vocabularies.

Namespaces are very simple on the surface but are a well-known field of combat in XML
arcana. For more information on namespaces, see XML In a Nutshell or Learning XML.

A.6 Tools for Processing XML

Many parsers exist for using XML with many different programming languages. Most
are freely available, the majority being Open Source.

A.6.1 Selecting a Parser

An XML parser typically takes the form of a library of code that you interface with your
own program. The SVG program hands the XML over to the parser, and it hands back
information about the contents of the XML document. Typically, parsers do this either
via events or via a document object model.

With event-based parsing, the parser calls a function in your program whenever a parse
event is encountered. Parse events include things like finding the start of an element, the
end of an element, or a comment. Most Java event-based parsers follow a standard API
called SAX, which is also implemented for other languages such as Python and Perl. You
can find more about SAX at http://www.megginson.com/SAX/.

Document object model (DOM) based parsers work in a markedly different way. They
consume the entire XML input document and hand back a tree-like data structure that the
SVG software can interrogate and alter. The DOM is a W3C standard; documentation is
available at http://www.w3.org/DOM/.

As XML matures, hybrid techniques that give the best of both worlds are emerging. If
you're interested in finding out what's available and what's new for your favorite
programming language, keep an eye on the following online sources:

XML.com Resource Guide

http://xml.com/pub/resourceguide/

XMLhack XML Developer News

http://xmlhack.com

http://www.w3.org/2000/svg
http://www.megginson.com/SAX/
http://www.w3.org/DOM/
http://xml.com/pub/resourceguide/
http://xmlhack.com/

 269

Free XML Tools Guide

http://www.garshol.priv.no/download/xmltools/

A.6.2 XSLT Processors

Many XML applications involve transforming one XML document into another or into
HTML. The W3C has defined a special language called XSLT for doing transformations.
XSLT processors are becoming available for all major programming platforms.

XSLT works by using a stylesheet, which contains templates that describe how to
transform elements from an XML document. These templates typically specify what
XML to output in response to a particular element or attribute. Using a W3C technology
called XPath gives you the flexibility to say not only "do this for every `person' element,"
but to give instructions as complex as "do this for the third `person' element whose
`name' attribute is `Fred.'"

Because of this flexibility, some applications have sprung up for XSLT that aren't really
transformation applications at all, but take advantage of the ability to trigger actions on
certain element patterns and sequencers. Combined with XSLT's ability to execute
custom code via extension functions, the XPath language has enabled applications such
as document indexing to be driven by an XSLT processor. You can see a brief
introduction to XSLT in Chapter 12 in Section 12.3.

The W3C specifications for XSLT and XPath can be found at http://w3.org/TR/xslt and
http://w3.org/TR/xpath, respectively.

http://www.garshol.priv.no/download/xmltools/
http://w3.org/TR/xslt
http://w3.org/TR/xpath

 270

Appendix B. Introduction to Stylesheets

As mentioned in Chapter 4, some attributes of SVG elements control the element's
geometry. An example of one such attribute would be the cx (center x) attribute of a
<circle>. Other attributes, such as fill, control the element's presentation. Stylesheets
provide a way for you to separate the presentation from the geometric structure; this lets
you control the visual display of many different SVG elements (and even documents) by
changing one stylesheet referenced by all the documents.

B.1 Anatomy of a Style

A style is a specification of a visual property for an element and the value that you would
like that property to have. The property name and the value are separated by a colon. For
example, to say that you want the stroke color for some element to be blue, the
appropriate style specifier would be stroke: blue.

To specify multiple properties in a style, you separate the specifiers with semicolons. The
following style specifier sets the stroke color to red, the stroke width to three pixels, and
the fill color to a light blue. The last property-value pair is followed by a semicolon. This
is not necessary, but is done to give the style a more consistent look.

stroke: red; stroke-width: 3px; fill: #ccccff;

B.2 Style Selectors

Once you have determined the visual properties you'd like, you must select the element or
elements to which they apply. The simplest way to apply a style specification to a single
element is to make that specification the value of a style attribute. So, if you want the
preceding specification to apply to a particular <circle> in your document, you write:

<circle cx="50" cy="40" r="12"
 style="stroke: red; stroke-width: 3px; fill: #ccccff;"/>

B.3 Internal Stylesheets

If you want the style specification to apply to all <circle> elements in a single document,
add an internal stylesheet. A style sheet consists of selectors (the names of the elements
you want to affect) and the style specifications for those selectors. The style specification
is enclosed in curly braces. The following applies styles to <circle> and <rect>
elements:

<style type="text/css"><![CDATA[
 circle {
 stroke: red; stroke-width: 3px;
 fill: #ccccff;
 }
 rect { fill: gray; stroke: black; }

 271

]]></style>

When you put a <style> element into an SVG document, you should enclose its contents
within <![[CDATA[and]]>. This notation tells XML parsers that the contents are pure
character data and should not, under any circumstances, be treated as information for
XML to parse.

Because this stylesheet is within a document, it applies to that document alone. If you
have many documents, all of whose circles and rectangles appear as specified in the
preceding example, take the specifiers, without any of the tags, and put them into a
separate myStyle.css file. In each SVG document, insert the following processing
instruction:

<?xml-stylesheet href="myStyle.css" type="text/css"?>

Then, at a later point, if you decide that all rectangles should be filled with a light green
and outlined in dark green, you can simply change the specification in myStyle.css to
read:

 rect {fill: #ccffcc; stroke: #006600; }

and all your documents, once redisplayed, will have green rectangles instead of gray
rectangles.

B.4 Style Selector Classes

The preceding stylesheet affects all <rect> and <circle> elements. Let's say, though,
that you want only some circles in your documents to be styled. Write your stylesheet
with a class specifier as follows, where the dot after circle indicates that the following
identifier is a class name:

 circle.special {
 stroke: red; stroke-width: 3px;
 fill: #ccccff;
 }

If, in your SVG document, you had the following elements, the first circle would show up
as the default (black fill, no stroke), and the second would take on the style attributes as
its class name matches the class identifier in the stylesheet.

<circle cx="40" cy="40" r="20"/>
<circle cx="60" cy="20" r="10" class="special"/>

It is possible to specify a generic class that can apply to any element. Presume that
several different graphic objects serve as warning symbols. You would like them to have
a yellow fill and a red border. You could write this selector, which consists only of a
class name and its style specifier:

 272

 .warning { fill: yellow; stroke: red; }

This generic class may now be applied to any SVG element. In the following example,
both the rectangle and triangle will have yellow interiors and red outlines.

<rect class="warning" x="5" y="10" width="20" height="30"/>
<polygon class="warning" points="40 40, 40 60, 60 50"/>

The class attribute may contain the names of several classes; their combined properties
will be applied to the element in question. We will add a generic class named
seeThrough for translucency to the previous example, and then apply both classes to the
polygon.

<svg width="100" height="100" viewBox="0 0 100 100">
 <style type="text/css"><![CDATA[
 .warning { fill: yellow; stroke: red; }
 .seeThrough { fill-opacity: 0.25; stroke-opacity: 0.5; }
]]></style>
 <rect class="warning" x="5" y="10" width="20" height="30"/>
 <polygon class="warning seeThrough" points="40 40, 40 60, 60 50"/>
</svg>

B.5 Using CSS with SVG

The question then becomes: which attributes in SVG elements can also be specified in a
stylesheet? Table B-1 is a list of the properties you may use in a stylesheet, the valid
values (with default value shown in boldface where appropriate), and the elements to
which they may be applied. It is a modified version of the property index from the SVG
specification at http://www.w3.org/TR/SVG/. [A]

[A] Copyright (C) 2001 World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio
University) All Rights Reserved. http://www.w3.org/Consortium/Legal/.

Table B-1. CSS property table for SVG
Name Values Applies to

alignment-baseline

auto | baseline |
before-edge |
text-before-edge |
middle | after-edge |
text-after-edge |
ideographic |
alphabetic | hanging |
mathematical

<tspan>, <tref>,
<altGlyph>, <textPath>

baseline-shift
baseline | sub | super |
percentage | length

<tspan>, <tref>,
<altGlyph>, <textPath>
elements

clip shape | auto Elements which establish a new
viewport, <pattern>

http://www.w3.org/TR/SVG/
http://www.w3.org/Consortium/Legal/

 273

elements and <marker>
elements

clip-path uri Container elements and graphics
elements

clip-rule nonzero | evenodd |
class=noxref

Graphics elements within a
<clipPath> element

color color

Elements to which properties
fill, stroke,
stop-color,
flood-color,
lighting-color apply

color-interpolation auto | sRGB | linearRGB
Container elements, graphics
elements and
<animateColor>

color-interpolation-filters auto | sRGB | linearRGB Filter primitives

color-profile auto | sRGB | name | uri <image> elements that refer to
raster images

color-rendering auto | optimizeSpeed |
optimizeQuality

Container elements, graphics
elements and
<animateColor>

cursor

uri | auto | crosshair |
default | pointer | move
| e-resize | ne-resize |
nw-resize | n-resize |
se-resize | sw-resize |
s-resize | w-resize |
text | wait | help

Container elements and graphics
elements

direction ltr | rtl <text>, <tspan>, <tref>
and <textPath> elements

display

inline | block |
list-item | run-in |
compact | marker | table
| inline-table |
table-row-group |
table-header-group |
table-footer-group |
table-row |
table-column-group |
table-column |
table-cell |
table-caption | none

<svg>, <g>, <switch>,
<a>, <foreignObject>,
graphics elements (including the
<text> element) and text
sub-elements (i.e., <tspan>,
<tref>, <altGlyph>,
<textPath>)

dominant-baseline

auto | use-script |
no-change | reset-size |
alphabetic | hanging |
ideographic |
mathematical | central |
middle |
text-after-edge |
text-before-edge |
text-top | text-bottom

Text content elements

 274

enable-background
accumulate | new [x y
width height]

Container elements

fill paint (default black) Shapes and text content
elements

fill-opacity opacity-value
(default 1)

Shapes and text content
elements

fill-rule nonzero | evenodd Shapes and text content
elements

filter uri | none Container elements and graphics
elements

flood-color
currentColor | color
specifier (default
black)

<feFlood> elements

flood-opacity alphavalue (default 1) <feFlood> elements

font

font-style,
font-variant,
font-weight, font-size
line-height,
font-family | caption |
icon | menu |
message-box |
small-caption |
status-bar

Text content elements

font-family
series of family-name
or generic-family

Text content elements

font-size
absolute-size |
relative-size |
length | percentage

Text content elements

font-size-adjust number | none Text content elements

font-stretch

normal | wider |
narrower |
ultra-condensed |
extra-condensed |
condensed |
semi-condensed |
semi-expanded |
expanded |
extra-expanded |
ultra-expanded

Text content elements

font-style normal | italic |
oblique Text content elements

font-variant normal | small-caps Text content elements

font-weight

normal | bold | bolder |
lighter | 100 | 200 | 300 |
400 | 500 | 600 | 700 | 800 |
900

Text content elements

glyph-orientation-horizontal angle (default 0deg) Text content elements

 275

glyph-orientation-vertical auto | angle Text content elements

image-rendering auto | optimizeSpeed |
optimizeQuality images

kerning auto | length Text content elements
letter-spacing normal | length Text content elements

lighting-color
currentColor | color
specification
(default white)

<feDiffuseLighting>
and
<feSpecularLighting>
elements

marker, marker-end, marker-mid,
marker-start none | uri

<path>, <line>,
<polyline> and
<polygon> elements

mask uri | none Container elements and graphics
elements

opacity alphavalue (default 1) Container elements and graphics
elements

overflow
visible | hidden |
scroll | auto

Elements which establish a new
viewport, <pattern>
elements and <marker>
elements

pointer-events

visiblePainted |
visibleFill |
visibleStroke |
visible | painted | fill
| stroke | all | none

Graphics elements

shape-rendering
auto | optimizeSpeed |
crispEdges |
geometricPrecision

Shapes

stop-color
currentColor | color
specification
(default black)

<stop> elements

stop-opacity alphavalue (default 1) <stop> elements

stroke paint Shapes and text content
elements

stroke-dasharray none | dasharray Shapes and text content
elements

stroke-dashoffset dashoffset (default 0) Shapes and text content
elements

stroke-linecap butt | round | square Shapes and text content
elements

stroke-linejoin miter | round | bevel Shapes and text content
elements

stroke-miterlimit miterlimit (default 4) Shapes and text content
elements

stroke-opacity opacity-value
(default 1)

Shapes and text content
elements

stroke-width width (default 1) Shapes and text content
elements

 276

text-anchor start | middle | end Text content elements

text-decoration
none | underline |
overline |
line-through | blink

Text content elements

text-rendering
auto | optimizeSpeed |
optimizeLegibility |
geometricPrecision

<text> elements

unicode-bidi normal | embed |
bidi-override Text content elements

visibility visible | hidden |
collapse

Graphics elements (including
the <text> element) and text
sub-elements (i.e., <tspan>,
<tref>, <altGlyph>,
<textPath> and <a>)

word-spacing normal | length Text content elements

writing-mode
lr-tb | rl-tb | tb-rl | lr
| rl | tb <text> elements

 277

Appendix C. Programming Concepts

Many graphic designers want to use the scripting capability of SVG as described in
Chapter 11. If they're not familiar with programming, they tend to practice what might be
called "voodoo scripting." In the popular-culture stereotype,[A] voodoo works by reciting
a mysterious spell and hoping that your enemies die horribly. Voodoo scripting works by
copying someone else's mysterious script into your SVG document and hoping that your
document continues to live. We're under no illusion (nor even a spell) that reading this
brief, purposely oversimplified summary will turn you into a master programmer. Our
goal is simply to introduce enough of the elementary programming concepts to remove
some of the mystery from the scripts that you copy and modify. The particular
programming language that we will discuss in this appendix is called ECMA Script;[B]
the concepts used in ECMA Script are common to many other programming languages.

[A] Unlike the actual practice of Santería and voudon, which are much more
complex and not inherently evil.

[B] It is the standardized version of the JavaScript language.

C.1 Constants

A constant is a fancy word for a number or string of characters that never changes.
Examples are 2, 2.71828, "message", and 'communication'. The last two are called
string constants. In ECMA Script, you can use either single or double quotes to mark the
boundaries of a string. This is good if you ever need to write things like "O'Reilly &
Associates" or 'There is no "there" there.'.

You will sometimes see the two Boolean constants true and false, which are used for
"yes-or-no" situations.

C.2 Variables

A variable is a block of memory reserved to hold some value that may change from time
to time. You can think of it as a mailbox with a name on it; the mailbox holds a slip of
paper with information written on it. Let's say you need to keep track of the current width
of a rectangle and need to store a changeable message; in ECMA Script you define these
variables like this:

var currentWidth;
var message;

You may visualize them as shown in Figure C-1.

Figure C-1. Two empty variables

 278

Variables defined this way have nothing in their "mailbox;" the technical term is that
these variables contain the null value. Variable names must start with a letter or an
underscore and can contain only letters, digits, and underscores. They are case sensitive,
so width, Width, and WIDTH are names of three different variables.

C.3 Assignment and Operators

You can put a value into a variable by using an assignment statement, which starts with a
variable name, an equal sign, and the value. Examples:

currentWidth = 32;
message = "I love SVG.";

You can read these as "set the value of currentWidth equal to 32" and "set the value of
message equal to "I love SVG." In reality, this statement works from right to left;
whatever is on the righthand side of the equal sign is placed into the variable on the
lefthand side. Note that all our ECMA Script statements end with a semicolon. There are
cases where you don't need one, but we'd rather have the semicolon and not need it than
need it and not have it. Figure C-2 shows the "after" picture for these assignments.

Figure C-2. Two assigned variables

Actually, we told you a small lie a few sentences ago. Whatever the righthand side of the
equal sign works out to goes into the variable on the lefthand side. This lets us do
mathematical operations, as in the following code.

var info; [1]
info = 7 + 2; [2]
info = 7 * 2; [3]
info = info + 1; [4]
info = "door"; [5]
info = info + "bell" [6]

[1] Create an empty variable named info.

[2] info will now contain the value 9 (seven plus two). You use the minus sign - for
subtraction.

 279

[3] The asterisk is used for multiplication, since the multiplication symbol is too easily
confused with the letter x. info will contain 14 (seven times two). The previous value of
nine will be discarded. You use the forward slash / for division.

[4] This is illegal in high school algebra, but not in ECMA Script. We start with the
righthand side of the equal sign: take the current value of info, which is 14, and add one
to it. The righthand side works out to 15. This result goes into the variable on the left side
of the equal, which just happens to be info. At the end of this statement, info will
contain the value 15.

[5] This takes the string "door" and puts it into info. In ECMA Script, a variable can
hold any sort of information at any time.

[6] This takes the current value of info, which is "door", and "adds" (appends) the string
constant "bell" to the end of it. The resulting value is the word "doorbell", which goes
back into info on the left side of the equal sign. The plus sign is the only operator that
works with strings; you can't subtract, multiply, or divide them.

You can define a variable and set its initial value all in one fell swoop. This is called
initializing a variable. You can have more than one operation on the righthand side of the
equal sign. In the following code, an empty variable named celsius is created, then a
variable named fahrenheit with value 212, then the Fahrenheit temperature is converted
to Celsius.

var celsius;
var fahrenheit = 212;
celsius = ((fahrenheit - 32) / 9) * 5;

C.4 Arrays

An array is an ordered collection of data, indexed by number. We compared a simple
variable to a mailbox (send mail to the "Smith Residence"). An array is like a set of
numbered apartment mailboxes (send mail to the "A-List Apartments, #12"). The only
difference is that array index numbers start at zero rather than one.[C] Here's a declaration
of an array of radius sizes for circles. This form initializes the array. The second
statement sets the value of the last element of the array to 9. You access one of the "slots"
of an array by putting its index number in square brackets. Figure C-3 shows the results
after the code has finished.

[C] This is not done to be contrary; it's because programs often use a mathematical
formula to select the relevant item. These formulas are invariably easier when you start
counting at zero.

var radiusSizes = new Array(8.5, 6.4, 12.2, 7);
radiusSizes[3] = 9;

Figure C-3. Depiction of an array

 280

C.5 Comments

Comments provide a way to document your programs so that other people can figure out
what you did. There are two kinds of comments in ECMA Script. If you place two
forward slashes in a row (//) they and everything to the end of that line are considered to
be a comment. If you want a multi-line comment, start with /* and end with */ as shown
here:

var interest; // this is accumulated on a daily basis
var rate; // expressed as a decimal; 75% is a rate of 0.75

/* Figure out the payment amount given a principal
 of $10,000 and 180 monthly payments. */

C.6 Conditional Statements

Ordinarily, your program statements are carried out in the order in which they appear.
Sometimes you may want to do different calculations depending upon some condition.
You use the if statement to do this. Here's a calculation for wages that depends upon the
number of hours worked. We presume that all the var statements have been set up
appropriately.

if (hours <= 40) [1]
{
 pay = hours * rate; [2]
}
else [3]
{
 pay = 40 * rate + (hours - 40) * rate * 1.5; [4]
}

[1] The expression in the parentheses is called the condition. It always asks a yes-or-no
question. In this case, the question is "is the value of the hours variable less than or equal
to 40?" Other comparison operations are less than (<), greater than (>) greater than or
equal (>=), exactly equal (==), and not equal (!=). Note that asking if two things are
equal to each other requires two equal signs, not one!

[2] If the answer to the question is "yes," then the program will do everything between
the opening and closing braces { and }...

[3] ...otherwise (else)...

 281

[4] ...do everything between the other set of curly braces. The curly braces are used to
signify that one or more statements should be grouped together, much in the way that
XML opening and closing tags tell where content begins and end.

C.7 Repeated Actions

Sometimes you want to repeat an action a specific number of times ("fill ten two-liter
containers from a large water tank"). You use a for loop to do the first sort of task. It's
called a loop because, if you were to draw arrows representing the path the computer
takes through your program, they would form a loop as the program repeated the actions.
Here's the container-filling scenario translated into ECMA Script, with variables for the
water tank and the containers presumed to be defined. The loop body, that is, the actions
we want repeated, are enclosed in curly braces.

var i; // a counter variable
for (i = 0; // start counting at zero
 i < 10; // up to (but not including) 10
 i++) // add one to the count at every repetition
{
 tank[i] = 2; // fill container number "i"
 waterTank = waterTank - 2; // take 2 liters out of the tank
}

Other times you want to repeat an action as long as some condition is true ("keep filling
two-liter containers from a large water tank as long as there is any water left"). For this,
you use a while loop.

i = 0; // start with container number zero
while (waterTank > 0) // while there is water left
{
 tank[i] = 2; // fill container number "i"
 waterTank = waterTank - 2; // take 2 liters out of the tank
 i = i + 1; // move on to the next container
}

C.8 Functions

You can accomplish some surprisingly sophisticated tasks with this small number of
programming concepts. You collect sets of ECMA Script statements designed to perform
a specific task into functions. Think of a function as a recipe card that gives a list of
ingredients and instructions which, when followed, create a specific dish. A function
starts with the keyword function followed by the function name. The name should be
indicative of the task that it does, and it follows the same rules that variable names do.
Following the function name, in parentheses, are the parameters of the function. A
parameter is extra information that the function needs when it does its task. Consider this
imaginary recipe:

Korean Kimch'i Surprise

 282

Take 100 grams of kimch'i per serving, 25 grams of ko-ju-jang red pepper paste per
serving, and 50 grams of mushrooms per serving. Mix well. Serve.

Before you can make the recipe, you have to supply some extra information — the
number of servings you intend to make. Our script might look like this:

function makeKimchiSurprise(numberOfServings)
{
 var kimchi = 100 * numberOfServings;
 var kojujang = 25 * numberOfServings;
 var mushrooms = 50 * numberOfServings;
 var surprise = kimchi + kojujang + mushrooms;
}

This is only the definition of the function. It does absolutely nothing until it is invoked, or
called on. (You may have hundreds of recipe cards in a file box at home. They just sit
there, inactive, until someone asks you to pull one card out and perform the cooking
tasks.) You will often call a function as the result of an event. In the following example a
click on the blue rectangle will call the function. The number 5 in the parentheses will fill
in the "extra information" required by the numberOfServings parameter.

<rect x="10" y="10" width="100" height="30" style="fill: blue;"
onclick="makeKimchiSurprise(5)" />

Even if the function doesn't need any parameters, you still have to
put the parentheses after its name. This is how ECMA Script can tell
the difference between a variable named area and a function called
area().

Some functions can also call other functions. For example, a function that calculates
compound interest might need to call upon another function that determines whether a
year is a leap year or not. A parameter lets the interest function tell the leap year function
what year it's interested in. The return statement will let the leap year function
communicate its result back to the caller. This allows you to modularize a program into
generally useful building blocks. In cooking terms, the makeHollandaiseSauce function
can be called from the makeEggsBenedict function as well as from
makeChickenFlorentine.

C.9 Objects, Properties, and Methods

Take a power supply with its on-off switch, a plastic dial, a lever with a spring, and a
metal chassis with rectangular slots and coils of wire in it. Put all these parts together, and
you get a toaster.

Each of these parts is an object. Some of them have characteristics that are of interest to
us: The power supply has a voltage of 110 or 220 volts; the chassis has a color and a

 283

number of slots, and the dial has a minimum and maximum setting. (The lever has no
interesting characteristics.)

You do actions with each of these objects: you push the lever down or pop it up, you
insert bread into the slots, you turn the power supply on or off, and you turn the dial to
the desired setting.

Let's take this toaster into the world of ECMA Script. Now our mailboxes don't just hold
slips of paper; they can hold entire other mailboxes (just as objects have little objects
inside them). We'll also let a mailbox hold recipe cards (functions) so that they can
perform actions. When a variable is inside another variable, we call the inner variable a
property. When a function is inside a mailbox, we call it a method. The diagram for the
toaster looks like Figure C-4.

Figure C-4. The object diagram for a toaster

We now have a very flexible way of modeling a toaster, but it's introduced a problem.
We can't just say things like:

color = "gold";
voltage = 220;
popUp();

to set the toaster's color or voltage or to pop out the bread because the color property is
nested inside the toaster variable, the voltage really belongs to the powerSupply

 284

inside the toaster, and it's the toaster's lever that does the popUp function. Instead,
we must say:

toaster.color = "gold";
toaster.powerSupply.voltage = 220;
toaster.lever.popUp();

These are easy to figure out if we read them from right to left and say "of" whenever we
see a period: "Put gold into the color of the toaster." "Put 220 into the voltage of the
power supply of the toaster." "Call the pop up method of the lever of the toaster."[D] Think
of this as the grown-up version of nested objects and methods that you learned as a child:
"this is the dog that chased the cat that killed the rat that ate the malt that lay in the house
that Jack built."

[D] If you insist upon reading left to right, adapt the suggestion for reading path names made by Elizabeth Castro in her book, Visual Quickstart
Guide to HTML for the World Wide Web: read the period as "contains." Then toaster.powerSupply.voltage = 220;
is read as "the toaster contains a power supply, which contains a voltage. Set that voltage to 220."

We have just used objects to model the behavior of a toaster; we've built a Toaster Object
Model. Similarly, there is a Document Object Model (DOM) that lets ECMA Script
access a document's properties and invoke its methods. Almost all of your access to an
SVG document will be through methods that begin with the word set or get. For
example, if you receive a mouse click event and want to find its x-coordinate, you would
write evt.getClientX(). To set the radius of a <circle> element with an id of wheel,
you might write svgDocument.getElementById("wheel").setAttribute("r", 3).

The SVG Document Object Model is actually a superset of the XML
Document Object Model; once you learn to manipulate the structure
of an SVG document, you can immediately apply that knowledge to
other XML documents, so the time you spend in learning the DOM
will be amply repaid.

C.10 What, Not How

We've given you an overview of the what of programming, which can serve as a base for
reading programs that other people have written and making sense of them (the programs,
not the people). How you define a task and lay out the programming steps to solve it is
another problem altogether, and far beyond the scope of this book. If you enjoy solving
crossword puzzles or brain teasers, or just solving problems in general, you may well
enjoy writing programs. If you would like to learn to write original programs in ECMA
Script, I strongly recommend Danny Goodman's excellent JavaScript Bible, which is
chock full of examples.

 285

Appendix D. Matrix Algebra

Matrix algebra is a branch of mathematics that defines operations on matrices, which are
series of numbers arranged in rows and columns. In addition to its many uses in science
and engineering, matrix algebra makes the computations for graphic operations very
efficient. The purpose of this appendix is to introduce you to the fundamental concepts of
matrix algebra that SVG uses "behind the scenes."

D.1 Matrix Terminology

We describe a matrix by its number of rows and columns. Figure D-1 displays a matrix
that arranges a series of daily temperatures over a two-week period into two rows of
seven columns each. This matrix is called a "two-by-seven" matrix. Matrices are enclosed
in square brackets when written.

Figure D-1. 2 by 7 matrix of daily temperatures

Here are some other terms that you may encounter when dealing with matrix operations:
A square matrix is a matrix with the same number of rows as columns. A vector is a
matrix with only one row, and a column vector is a matrix with only one column. The
individual entries in a matrix are called entries, and the technical term for a plain number
is a scalar. Now you can bring these sure-fire conversation stoppers to the next party you
attend.

Applying the concept of a matrix to SVG, you might express a set of x and y coordinates
as a two-by-one matrix. This isn't the way we'll ultimately end up representing
coordinates, but it's a good place to start, as it's easy to understand. In this representation,
the point (3, 5) is expressed as shown in Figure D-2.

Figure D-2. Coordinates expressed as a matrix

D.2 Matrix Addition

The easiest matrix operation is addition. To add two matrices, you add their
corresponding elements. This, of course, requires that your matrices have exactly the
same number of rows and columns. Figure D-3 shows the addition of 2 matrices, each
3-by-2.

Figure D-3. Addition of two 3 by 2 matrices

 286

We see that the translate transformation in SVG could be accomplished easily by
matrix addition. For example, the matrix addition in Figure D-4 would implement
transform="translate(7, 2)" for any point (x, y).

Figure D-4. Simple method to translate coordinates

The order in which you add matrices doesn't matter. Technically, we say that matrix
addition is commutative (A + B = B + A). It is also associative; given three matrices A, B,
and C, (A + B) + C is the same as A + (B + C). There is such a thing as matrix
subtraction; just subtract the corresponding elements of the two matrices. Just as with
regular subtraction, matrix subtraction is not commutative.

D.3 Matrix Multiplication

You may be thinking that matrix multiplication works in a similar manner, and that's how
you can do a scale() transformation. Unfortunately, the easy way doesn't work this time.
Matrix multiplication is significantly more complicated than matrix addition. In the first
examples that follow, this complexity appears to be needless. As we proceed, you'll see
that the usefulness of matrix multiplication far outweighs its difficulty.

In order to multiply two matrices, the number of columns of the first matrix must equal
the number of rows of the second matrix. Such matrices are called compatible. This
means you can multiply a 3-by-5 matrix times a 5-by-4 matrix, but not a 3-by-5 matrix
times a 3-by-2 matrix. The matrices we will multiply in Figure D-5 are compatible.

Figure D-5. Two matrices to be multiplied

The resulting matrix will have the same number of rows as the first matrix, and the same
number of columns as the second matrix. Thus, the example's 2-by-3 matrix times the
3-by-2 matrix will result in a 2-by-2 matrix.

The entry that will go in row one, column one of our result matrix is the cross product of
the first row of the first matrix and the first column of the second matrix. "Cross product"

 287

is a fancy way of saying "add up the products of the corresponding entries in a row and
column" as shown in Figure D-6.

Figure D-6. First entry in multiplied matrices

To find the quantity to place in row two, column one (the lower left) of the result matrix,
take the cross product of row two in the first matrix and column one in the second matrix,
as shown in Figure D-7.

Figure D-7. Second entry in multiplied matrices

Calculating the remaining items produces the result shown in Figure D-8.

Figure D-8. Completed multiplication of matrices

Given this information, we can now use matrix multiplication to express the calculations
needed to scale a point (x, y) by a factor of 3 horizontally and a factor of 1.5 vertically.
Our transformation matrix will have to have two rows and two columns so it is
compatible with our two row by one column coordinates, as shown in Figure D-9.

Figure D-9. Simple scaling by multiplying matrices

Unlike multiplication of single numbers, matrix multiplication is not
commutative. If two matrices, A and B, aren't square matrices, then
A·B won't have the same number of rows and columns as B·A (if
they're even compatible in both directions). Even if A and B are both
3-by-3 square matrices, there's no guarantee that A times B will
result in the same answer as B times A In fact they'll come out

 288

equal in only a very few special cases.

There is another limited form of multiplication; multiplying a matrix by a scalar (a plain
number) will multiply every item in the matrix by the scalar, as shown in Figure D-10.
We didn't mention this in conjunction with scaling, since this construct scales uniformly,
and SVG scaling isn't always the same horizontally and vertically.

Figure D-10. Multiplying a scalar by a matrix

There is no such thing as matrix division as such. There is a construct called a matrix
inverse, which is analogous to the reciprocal of a number, but it's very complicated to
calculate, and SVG doesn't make any great use of it.

D.4 How SVG Uses Matrix Algebra for Transformations

The approach we've taken to translation and scaling works, but it's not ideal. For instance,
if we want to translate a point and then scale it, we need to do one matrix addition and
then a matrix multiplication. SVG uses a clever trick to represent coordinates and
transformation matrices so you can do scaling and translation all with one operation. First,
it adds a third value, which is always equal to one, to the coordinate matrix. This means
that the point (3, 5) will be represented as shown in Figure D-11.

Figure D-11. SVG representation of a coordinate

SVG uses a 3-by-3 matrix, again set up with extra zeroes and ones, to specify the
transformation. Figure D-12 shows a matrix that translates a point by a horizontal
distance of tx and a vertical distance of ty.

Figure D-12. SVG representation of translation

Figure D-13 shows a transformation matrix that will scale a point by a factor of sx in the
horizontal direction and sy in the vertical direction.

 289

Figure D-13. SVG representation of scaling

What we've bought with this is a consistent notation; all our transformations, including
rotation and skewing, can be represented with 3-by-3 matrices. Furthermore, since
everything is 3-by-3, we can construct a chain of transformations by multiplying those
matrices together; they're guaranteed to be compatible. For example, to do a translation
followed by a scaling, we multiply the matrices in that order (see Figure D-14).

Figure D-14. Translation followed by scaling

Again, it seems as if we're needlessly complicating matters. In order to transform the
point (3, 5), we now need two matrix multiplications. To transform another point would
require two more multiplications. Given a <path> element with several hundred points,
this could run into some serious computing time.

Here's where SVG does something clever: it multiplies the first two matrices together,
and stores that result, as shown in Figure D-15.

Figure D-15. Result of multiplying translation and scaling matrices

This "pre-multiplied" matrix now embodies both of the transformations. By multiplying
this new matrix times a coordinate point's matrix, we can do the translation and scaling
with a single matrix multiplication (see Figure D-16). Now conversion of a hundred
points would require only one hundred multiplications, not two hundred.

Figure D-16. Result of premultiplying translation and scaling matrices

 290

If we had to do a translation followed by a rotation followed by a scale, we'd create three
3-by-3 matrices; one to do the translation, one to do the rotation, and one to do the
scaling. We'd multiply them all together (in that order), and the resulting matrix would
embody all the calculations needed to do all three transformations.

As we mentioned in Section D.3, matrix multiplication is not
commutative. If we change the order of the transformation matrices,
we get a different result. This is the mathematics behind the fact that
the sequence of transformations makes a difference in the resulting
graphic, as described in Chapter 5 in Section 5.3.

This, then, is the power of matrix algebra; it lets us combine the information about as
many transformations as we want into one single 3-by-3 matrix, thus dramatically
reducing the amount of calculation necessary to transform points. The matrices in Figure
D-17 are the ones used to specify a rotation by an angle a, a skew along the x-axis of ax,
and a skew along the y-axis of ay.

Figure D-17. Rotate, skew x, and skew y transformation matrices

SVG also uses matrix algebra quite heavily in the calculations associated with filters,
which are described in Chapter 10. There, a pixel's red, green, blue, and alpha
(opaqueness) values are described as a matrix with five rows and one column. It also adds
a fifth row so that a 5-by-5 transformation matrix can add a constant amount to any of the
values as well as multiply them by any desired factor. The economies of scale we get by
pre-multiplying coordinate transformation matrices work equally well when
pre-multiplying pixel manipulation matrices.

The <feColorMatrix> filter, described in Chapter 10 in Section 10.3.1, lets you specify
all twenty values and places them in the pixel transformation matrix as shown in Figure
D-18.

Figure D-18. Color transformation matrix

 291

Appendix E. Creating Fonts

The fonts built into the system that renders your SVG documents will take care of the
vast majority of your needs. Sometimes, though, you will want to use a custom font. It is
possible to create a font for use with SVG from scratch. In brief, you use a
element tag to describe the origin and default width of the font's glyphs. Inside the
 is the <font-face> element, which has an immense number of attributes that
describe the font's dimensions in excessive detail. These attributes are summarized in the
SVG specification at http://www.w3.org/TR/SVG/fonts.html. Following the
<font-face> are <glyph> elements, which contain path descriptions for each of the
glyphs you wish to have in your font.

While it is possible to create fonts from scratch, it's a lot of work, and often a duplication
of effort, since the glyphs you need may be in an already-existing font. If you already
have a True Type font with the desired glyphs, you are in luck.

E.1 The ttf2svg Utility

The Apache Batik project has created a utility that will convert your True Type fonts to
SVG. The following summary is adapted from the Batik project's documentation and is
Copyright (C) 2000 The Apache Software Foundation. All rights reserved.

If you are using the Batik binary distribution, type the following at the command line:

java -jar batik-ttf2svg.jar [options]

If you are using the Batik developer distribution, type the following at the command line:

build ttf2svg [options]

In both cases, the options are the same:

ttf-path
[-l range-begin]
[-h range-end]
[-ascii] [id id]
[-o output-path]
[-testcard]

The options have the following meaning:

ttf-path

Specifies the True Type font file that contains the characters to be converted.

-l range-begin

http://www.w3.org/TR/SVG/fonts.html

 292

-h range-end

The low and high value of the range of characters to be converted to SVG. (ASCII
or Unicode values.)

-ascii

Forces usage of the ASCII character map.

-id id

Specifies the value for the id attribute of the generated element.

-o output-path

Specifies the path for the generated SVG Font file. If not specified, output goes to
the Java console.

-testcard

Specifies that a set of SVG <text> elements should be appended to the SVG Font
file to visualize and test the characters in the SVG Font. This provides an easy
way to validate the generated SVG Font file visually.

For example, to convert characters 48 to 57, that is, '0' to '9', in the myFont.ttf into their
SVG equivalent in the mySVGFont.svg file, appending a test card so that the font can be
visualized easily, you would use this command:

java -jar batik-ttf2svg.jar /usr/home/myFont.ttf -l 48 -h 57
 -id MySVGFont -o mySVGFont.svg –testcard

Make sure you have the right to embed a font before you embed it in
an SVG file. True Type Font files contain a flag that defines the
"embeddability" of a font, and there are tools for checking that flag.

 293

Appendix F. Using SVG with Other XML Applications

John Donne said that no man is an island, and likewise SVG is not the only XML
application in the universe. In fact, as an XML application, SVG is intended to be used
with other XML applications. We'll explore several such uses in this appendix.

F.1 Referring to an SVG Document in HTML

OK, so we lied. HTML isn't an XML application, but you'll still want to put SVG
graphics in a web page. For most browsers, this is done by using a plug-in. As of this
writing, Adobe's SVG viewer plugin is available for Windows and Macintosh systems.
To have a plug-in display in an SVG file within an HTML document, you use the
<embed> element. The src attribute specifies the file in which the SVG resides, and the
width and height attributes tell how much screen space to reserve for the graphic. The
graphic will be centered in the space that you specify. You must also specify a type
attribute with a value of image/svg+xml.

<embed src="some_file.svg" width="100" height="200"
 type="image/svg+xml" />

Additionally, you may specify a pluginspage attribute whose value is a URL where
users may download the plug-in.

F.2 Referring to an SVG Document in XHTML

This is where things get interesting. First, the <embed> element is deprecated in HTML
4.0, and nonexistent in HTML 4.01 and XHTML. Obviously, this calls for other
measures. In place of <embed>, you must use the <object> element. It also needs a
height, width, and type, but it uses the data attribute to specify where the SVG
document lives. Any content between the opening and closing <object> tags will be
displayed if the browser doesn't support the type of object you've specified.

<object data="some_file.svg" width="100" height="200"
 type="image/svg+xml">
 <p>
 Sorry, but your browser doesn't support
 SVG objects. What a pity.
 </p>
</object>

If you use <object>, be aware that it doesn't work at all in many browsers with version
numbers less than 4.0, and is subject to annoying oddities in all but the latest browsers.

F.3 Placing SVG Directly Within XHTML Documents

 294

Of course, the ultimate goal is to place SVG elements directly within an XHTML
document. Whenever you mix elements from two different markup languages, you must
differentiate them so that a browser or parser can tell which elements belong to which
language. This is done by putting a namespace prefix on the markup for at least one of
the two languages.[A]

[A] The technical term for this is namespaces. Appendix A describes namespaces in more detail.

The other joker in the deck is that only the very latest browsers allow you to mix SVG
and XHTML. Microsoft's Internet Explorer version 5.5 and above, and an SVG-enabled
version of Mozilla, available at http://www.croczilla.com/svg/index.html, permit you to
do this intermixing. Example F-1 shows the setup for Internet Explorer.

Example F-1. XHTML and SVG in one document

<html xmlns:svg="http://www.w3.org/2000/svg"> [1]

<object id="AdobeSVG" [2]
 CLASSID="clsid:78156a80-c6a1-4bbf-8e6a-3cd390eeb4e2">
</object>
<?import namespace="svg" implementation="#AdobeSVG"?>
<head><title>SVG Example</title></head> [3]
<body>
<p>
 Behold SVG mixed with XHTML.
</p>
<svg:svg width="100px" height="100px" viewBox="0 0 100 100"> [4]
 <svg:rect x="10" y="20" width="30" height="40"
 fill="blue" stroke="none"/>
</svg:svg>
<p> [5]
 More XHTML
</p>
</body>
</html>

[1] The attribute in this element establishes that any element beginning with svg is
associated with the SVG specification.

[2] These four lines are a Microsoft magic spell that loads the appropriate code to handle
SVG. This magic spell is part of something that Microsoft calls "binary behaviors" and
they are a proprietary method of emulating XML namespaces. This goes totally counter
to the philosophy and practice of XML, but, because it does exist and people will insist
upon using it, we have to mention it. If you're using the SVG-enabled version of Mozilla,
you don't need these lines.

[3] Standard XHTML. Nothing to look at here; keep moving along.

http://www.croczilla.com/svg/index.html

 295

[4] All the tags associated with SVG are preceded with the prefix svg:, just as we stated
in the first line of the document. This includes the closing tags as well as the opening
tags.

[5] More XHTML at the end of the document.

If you have an existing SVG document that you want to insert in an
XHTML document, and you need to prefix all the tags, follow these
steps in your favorite text editor:

1. Replace all </ with %%/, presuming that %%/ does not occur
elsewhere in your text.

2. Replace all < with <svg:. If you have any <![CDATA[..]]<
sections, make sure you don't replace the less than signs
inside them.

3. Replace all %%/ with </svg:.

F.4 Embedding SVG in XSL Formatting Objects

The other XML application that supports inline SVG is Extensible Stylesheet Language
Formatting Objects (XSL-FO). This is a markup language used to specify page
formatting of text. You may use the Apache Software Foundation's FOP software tool to
take a document written in XSL-FO and transform it to Adobe's PDF (Portable Document
Format). You may see the XSL-FO specification at http://www.w3.org/TR/xsl/ or read a
brief introduction in Chapter 13 of XML in a Nutshell by Elliotte Rusty Harold and W.
Scott Means. FOP is available at http://xml.apache.org.

Example F-2 lays out a document with text and SVG graphics for the cover of what must
surely be one of the more eccentric Compact Discs ever recorded. The graphic has
nothing whatsoever to do with the subject of the disc; it's merely an existence proof.

Once we run this file through FOP, we can display it in our favorite PDF viewer. Figure
F-1 shows a screenshot.

Figure F-1. PDF output

http://www.w3.org/TR/xsl/
http://xml.apache.org/

 296

Example F-2. Combined XSL-FO and SVG markup

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format"> [1]
<fo:layout-master-set> [2]
<fo:simple-page-master [3]
 margin-right="0.5cm"
 margin-left="0.5cm"
 margin-bottom="0.5cm"
 margin-top="0.5cm"
 page-height="12cm" page-width="12cm"
 master-name="cdcover">
<fo:region-body/> [4]
</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-name="cdcover"> [5]
<fo:flow flow-name="xsl-region-body" font-family="Times"> [6]

 <fo:block font-size="12pt" font-style="italic" space-after="12pt">
[7]
 The Peoria Bagpipe and Timpani Ensemble Performs
 </fo:block>

 <fo:block font-size="24pt" font-weight="bold" space-after="24pt"
 text-align="center">
 Beethoven on Broadway!
 </fo:block>

 <fo:block text-align="center"> [8]
 <fo:instream-foreign-object width="140px" height="140px"> [9]

 297

 <!-- Simple geometric design -->
 <svg xmlns="http://www.w3.org/2000/svg" width="140px" height="140px">
[10]
 <polygon points="0 0 140 0 0 140" style="fill: #cccccc;"/>
 <polygon points="0 140 140 140 140 0" style="fill: #666666;"/>
 <circle cx="70" cy="70" r="35"
 style="fill: white; stroke: black;"/>
 </svg>
 </fo:instream-foreign-object>
 </fo:block>

 <fo:block text-align="center" font-size="9pt" space-before="2.5cm">
[11]
 Copyright 2001 O'Reilly & Associates
 </fo:block>
</fo:flow>
</fo:page-sequence>
</fo:root>

[1] It is customary to prefix all of the tags in an XSL-FO document with fo, and that is
what the xmlns:fo attribute does. The root element of the document, therefore, is
<fo:root>.

[2] The document begins by specifying templates for pages. This layout will contain only
one page template.

[3] The <fo:simple-page-master> lets you specify the page dimensions and margins,
and an identifying name.

[4] Every page template is divided into regions for a header, footer, left edge content,
right edge content, and the page body. The <fo:region-body> must always be specified.
This region, too, can have margins, but we aren't going to bother with those here. We
won't have headers or footers, so we won't specify any other regions than the body.

[5] After the page templates are specified, we can begin entering content that will go into
a sequence of pages that are laid out according to the given master-name template.

[6] Content flows into each region that has been specified for a page sequence. Since
we've specified only one region (the body), that's where text will flow into.

[7] <fo:block> is one of the most important elements you can have in the flow. Each
new block begins on a new line. Any attributes you specify in this element will be
applied to the text in the block. This block and the next one contain simple text.

[8] Unlike the preceding two blocks, this one will be horizontally centered on the screen.

[9] And, it will contain an <fo:instream-foreign-object> — namely, our SVG
graphic. The incarnation of FOP that we used, version 0.20.1, is very finicky about its

 298

measurements. We recommend that you specify the width and height of the graphic in
pixels, and that it exactly match...

[10] ... the dimensions that you use in your <svg> element. Our attempts to use
millimeters as width and height units in conjunction with a viewBox were entirely
unsuccessful. The xmlns attribute has been set up so that tags from SVG do not need any
prefix.

[11] Once the <fo:instream-foreign-object> and its containing <fo:block> have
finished, we return to a normal <fo:block> for a copyright notice.

If you wish to keep your SVG graphic in a separate file but still
include it within an XSL-FO document, you may do so using the
<fo:external-graphic> element. If, in the preceding example, we
had put the graphics in a separate file named design.svg, we could
replace the entire <fo:instream-foreign-object> element with:

<fo:external-graphic src="design.svg"

 content-width="140px" content-height="140px"/>

 299

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of SVG Essentials is a great argus pheasant (Argusianus argus).
This pheasant can be found in Malaysia, Thailand, Sumatra, and Borneo, where it lives in
tropical rainforests. The males have blue faces, black crowns, and short crests; their under
parts are mottled brown. The iridescent spots on their wings and tail feathers aid in
attracting females. Female argus pheasants are smaller than males and lack their ornate
plumage.

The great argus pheasant's wings can continue to grow into the bird's sixth year. Its tail
feathers are the longest of all birds, measuring up to 5.7 feet. Some cultures use these
feathers in their headdresses.

Jeffrey Holcomb was the production editor, and Ellie Cutler was the copyeditor for SVG
Essentials. Sue Willing was the proofreader. Jane Ellin, Darren Kelly, and Claire Cloutier
provided quality control. Derek Di Matteo provided production assistance. J. David
Eisenberg and Brenda Miller wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial Archive.
Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC
Garamond font.

David Futato designed the interior layout based on a series design by Nancy Priest. The
print version of this book was created by translating the DocBook XML markup of its
source files into a set of groff macros using a filter developed at O'Reilly & Associates by
Norman Walsh. Steve Talbott designed and wrote the underlying macro set on the basis
of the GNU troff -mgs macros; Lenny Muellner adapted them to XML and implemented
the book design. The GNU groff text formatter Version 1.11.1 was used to generate
PostScript output. The text and heading fonts are ITC Garamond Light and Garamond
Book; the code font is Constant Willison. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. This colophon was written by Linley Dolby.

 300

Index
A a element actions, repeating , 2nd , 3rd adding matrices Adobe Illustrator Bézier curves
and Adobe SVG viewer plugin for aligning scaled images vis-a-vis viewport text alpha
channel alpha value animate element animateColor element animateMotion
element animateTransform element animation beginning/ending duration of how time is
measured repeating scripting and Apache Software Foundation , 2nd appendChild
 See : elliptical arcs arc, elliptical arrays ascent aspect ratio, preserving assignment
statement assignments associative matrix addition attributeName attributes changing for
objects presentation specifying styles as text XML and attributeType

B background, accessing BackgroundAlpha BackgroundImage baseline baseline-shift style
property
 See : shapes basic shapes Batik SVG viewer Batik transcoders beginning animations beveling
effect, feConvolveMatrix for Bézier curves Bézier, Pierre bidirectionality bitmaps blurring
effect feConvolveMatrix for feGaussianBlur for Boolean constants
 See : objectBoundingBox bounding box brightness, adjusting with feComponentTransfer bump
map by attribute

C cap-height Cartesian coordinates, converting cartography
 See : CSS, using with SVG Cascading Style Sheets case studies adding text to
graphics masking graphics CDATA center point, rotating/scaling around character
encodings character references characters escaping child nodes , 2nd circles classes classpath,
Tomcat servlet container and clearInterval clearTimeout clipPath element clipPathUnits clipping
area clipping graphics closepath command uppercase vs. lowercase color-interpolation-filters color
spaces color transition colors feColorMatrix for for filling shapes , 2nd for lines/strokes , 2nd
combining images with feBlend with feComposite with feMerge commands for
paths uppercase vs. lowercase , 2nd comments adding to XML documents commutative matrix
addition compatible matrices conditional processing in XSL constants control point
converting data via Perl elliptical arcs XML via XSLT , 2nd coordinate system,
transforming , 2nd for a single object from Cartesian coordinates sequences of coordinates default
user nested specifying for viewport createElement createTextNode in scripting cross
products CSIRO SVG viewer CSS, using with SVG , 2nd cubic Bézier curves
curves Bézier polybézier
 See : fonts custom fonts

D dashed lines data, converting via Perl de Casteljau, Paul default user coordinates defs
element descent diffuse lighting diffuseConstant factor dilate effect
 See : DOM Document Object Model document structure, vs. presentation Document Type
Definitions (DTDs) DOM (Document Object Model) , 2nd functions for dragging objects drop
shadows simulated by gray ellipse DTDs (Document Type Definitions) dur (duration) in
animation dx/dy attributes, in tspan

E ECMA Script elements, XML and ellipses simulating drop shadow elliptical arcs parameters
for em-box em-height embed element embedding SVG graphics into web pages , 2nd SVG into
XML embossing effect, feConvolveMatrix for enable-background property ending
animations endpoints entity references entries (in matrices) erode effect escaping
characters evenodd value (fill-rule) event handlers , 2nd events ex-height

 301

 See : case studies examples
 See : XML Extensible Markup Language Extensible Stylesheet Language Formatting Objects
(XSL-FO) extensions to XSLT external stylesheets

F feBlend filter feColorMatrix filter transformation matrix and feComponentTransfer
filter feComposite filter feConvolveMatrix filter feDiffuseLighting filter feDisplacementMap
filter feDistantLight element feFlood filter feGaussianBlur filter feImage filter feMerge
filter feMergeNode filter feMorphology filter feOffset filter fePointLight
element feSpecularLighting filter feTile filter feTurbulence filter files, including using image
element fill attribute, SMIL vs. SVG fill color fill-opacity property fill-rules paths and filter
effects filter primitives filters drop shadows, creating with glowing shadows, creating
with reference summary for results of, working with filterUnits attribute flood fill
filter flood-fill-color flood-fill-opacity focal point font-family property font-size
property font-style property font-weight property fonts creating using FOP software
tool format-number function (XSLT) from value functions

G g element , 2nd , 3rd Gaussian blur generating
SVG getAttribute getChildNodes getClientX/getClientY getElementById getElementsByTag get
NextSibling getNodeName getNodeType getTarget , 2nd glowing
shadows glyph-orientation-vertical property glyphs gradient
stops gradients linear radial gradientTransform attribute gradientUnits attribute
graphics adding text to clipping masking SVG, creating thinning/thickening types
of grouping objects using g element , 2nd , 3rd

H h/H commands horizontal lineto commands HTML, interacting with SVG , 2nd

I image element images combining with feMerge referencing with feImage inflection
point initializing variables inline styles insertBefore internal
stylesheets , 2nd internationalization Internet Explorer (Microsoft)

J Jasc WebDraw Java converting XML via , 2nd extensions to XSLT, written in joins

L large-arc-flag elliptical arc parameter length, setting for text letter-spacing
property ligatures lighting effects lighting-color property line caps linear color
space linearGradient element spreadMethod for linearRGB space lines , 2nd dashed polyline
element for multiple shortcuts for horizontal/vertical lineto commands uppercase vs.
lowercase links loops lowercase commands , 2nd

M marker-end property marker-mid property marker-start
property markerHeight/markerWidth markers nested orient attribute for refX/refY attributes
for markerUnits attribute maskContentUnits masking graphics maskUnits mathematical operations
on matrices MathML specification matrix algebra using for transformations matrix inverse meet
specifier merging filter results , 2nd methods mixed content modularizing programs mouse
events mouseover/mouseout events moveto command uppercase vs. lowercase Mozilla mpath
element multiplying matrices

 302

N name syntax, XML and named classes namespaces nested coordinates nested markers nested
patterns none specifier nonzero value (fill-rule) notation shortcuts for paths null value number
function

O objectBoundingBox with clipPathUnits with filterUnits with maskContentUnits with
maskUnits with patternContentUnits with patternUnits objects changing attributes
for dragging grouping , 2nd , 3rd responding to events offset characters OMF (Weather
Observation Markup Format) onbegin/onend event handlers onmouseover/onmouseout event
handlers opacity operators orient attribute origin (the)

P parameters for elliptical arcs forfunctions parent (reserved word) parent node parsers for
XML paths , 2nd Bézier curves and clipping commands for filling relative coordinates
and shortcuts for text placed along patternContentUnits attribute patterns nested patternUnits
attribute Perl, converting data via pixels
 See : scalars plain numbers polybézier curves cubic quadratic polygons rules for
filling polylines , 2nd presentation attributes presentation vs. structure preserveAspectRatio
attribute specifying alignment for with marker products of entries programming concepts programs,
modularizing properties , 2nd proportional fonts

Q quadratic Bézier curves

R radialGradient element default values for attributes raster files, including using image
element raster graphics rectangles reference summaries for filters for paths for shapes for
SVG transformations referencing objects refX/refY attributes relative
coordinates repeatCount repeatDur repeating actions , 2nd repeating
animations replaceChild representing coordinates , 2nd requesting web pages resources for
further reading Adobe SVG viewer Batik SVG viewer Bézier curves DocBook
DTD DOM lighting effects processing instructions SAX SVG
specification textures XML , 2nd XML entities XML namespaces XML
well-formedness XSL-FO specification XSLT/XPath specifications RGB space rotate
attribute rotate transformation rotation , 2nd of elliptical arc's x-axis rounded rectangles

S scalability
 See : SVG Scalable Vector Graphics scalars multiplying matrices by scale
transformation scaling around a center point scripting , 2nd animation and events
and modifying text with sequences of transformations server, setting up serving SVG
files servlet containers servlets, writing set element setAttribute function , 2nd setInterval
function setTimeout function setting up a server
shadows drop glowing shapes , 2nd , 3rd , 4th tables summarizing sharpening effect,
feConvolveMatrix for shortcuts for paths sibling nodes skew transformations skewing,
mathematics of , 2nd slice specifier SMIL fill attribute SMIL2 (Synchronized Multimedia
Integration Language Level 2) smooth
curves cubic quadratic SourceAlpha SourceGraphic spans specifiers specular
lighting specularConstant factor specularExponent factor spreadMethod attribute for
linear gradients for radial gradients square matrix sRGB space startOffset attribute stop
element, in gradients stop point, in gradients string constants stroke color stroke-dasharray
property stroke-linecap style property stroke-linejoin style property stroke-miterlimit style

 303

property stroke-opacity property stroke-width property strokes strokeWidth
setting structure vs. presentation style selector classes styles, specifying as
attributes stylesheets external internal , 2nd using with SVG subpaths substring-after
function (XSLT) substring-before function (XSLT) superscripts and subscripts surfaceScale
attribute SVG (Scalable Vector Graphics) generating interacting with HTML serving
web files and using with other XML applications vs. other graphics systems SVG files,
including using image element SVG viewers sweep-flag elliptical arc parameter switch
element symbol element Synchronized Multimedia Integration Language Level 2 (SMIL2)

T templates, in XSL text , 2nd adding to a graphic aligning along a path attributes
for internationalization and modifying with scripting properties for setting length
for vertical whitespace and text offset text span text-anchor property text-decoration
property textLength textPath thinning/thickening graphics tiles tiling filter timing for
animations duration of how it is measured tint variable to attribute Tomcat servlet container
tools FOP ttf2svg transcoders transformations , 2nd for a single object of gradients of
patterns sequences of table summarizing using matrix algebra transition limits for radial
gradients transition line for linear gradients translate transformation translation True Type fonts,
converting to SVG tspan element ttf2svg utility , 2nd

U unicode encoding schemes unicode-bidi style property uppercase commands , 2nd URLs Adobe
SVG viewer Apache Software Foundation character encodings convolve effects CSIRO SVG
viewer DocBook DTD DOM standard FOP software tool (Apache) for this book Free XML Tools
Guide MathML specification Mozilla browser SMIL2 SVG specification U.S. Census Bureau
Cartographic Boundary Files Unicode standard Xerces XML parser XML specification XML.com
Resource Guide XMLhack XML Developer News XSL-FO specification XSLT/XPath
specifications use element user coordinates userSpaceOnUse with clipPathUnits with
filterUnits with markerUnits with maskContentUnits with maskUnits with
patternContentUnits with patternUnits
 See : tools utilities

V v/V commands validity, XML and values, extracting in XSL variables in
XSL initializing vector graphics vector matrix vertical lineto commands vertical text viewBox
attribute markers and patterns and viewport , 2nd

W Weather Observation Markup Format (OMF) web files, serving web graphics web
pages embedding SVG graphics into , 2nd requesting well-formedness, XML
and whitespace width of strokes word-spacing property World Wide Web
Consortium writing-mode property

X x-axis elliptical arc rotation parameter x-coordinate elliptical arc parameter x-radius elliptical arc
parameter Xalan XSLT processor Xerces XML parser , 2nd XHTML, interacting with SVG XML
converting via XSLT , 2nd embedding SVG into tools for processing XML parsers , 2nd , 3rd
XSL conditional processing in developing stylesheets in XSL-FO, interacting with
SVG xsl:apply-templates xsl:attribute xsl:choose xsl:if xsl:otherwise xsl:output xsl:template x
sl:text xsl:value-of xsl:variable xsl:when XSLT converting data via , 2nd extending in
Java format-number function in number function in substring-before/substring-after functions
in XSLT file, for use by servlet XSLT processors , 2nd

 304

Y y-coordinate elliptical arc parameter y-radius elliptical arc parameter

	Table of Content
	Dedication
	Preface
	Who Should Read This Book?
	Who Should Not Read This Book?
	If You're Still Reading This...
	About the Examples
	Request for Comments
	Acknowledgments

	Chapter 1. Getting Started
	1.1 Graphics Systems
	1.1.1 Raster Graphics
	Figure 1-1. Raster graphic rectangle

	1.1.2 Vector Graphics
	Figure 1-2. Vector graphic rectangle

	1.1.3 Uses of Raster Graphics
	1.1.4 Uses of Vector Graphics

	1.2 Scalability
	
	Figure 1-3. Raster image of cat
	Figure 1-4. Vector image of cat
	Figure 1-5. Expanded raster image
	Figure 1-6. Expanded anti-aliased raster image
	Figure 1-7. Expanded vector image

	1.3 SVG's Role
	1.4 Creating an SVG Graphic
	1.4.1 Document Structure
	Example 1-1. Basic structure of an SVG document

	1.4.2 Basic Shapes
	Example 1-2. Basic shapes -- circle
	Figure 1-8. Stage one -- circle

	1.4.3 Specifying Styles as Attributes
	Example 1-3. Basic shapes -- filled circles
	Figure 1-9. Stage two -- face and eyes

	1.4.4 Grouping Graphic Objects
	Example 1-4. Basic shapes -- lines
	Figure 1-10. Stage three -- right whiskers

	1.4.5 Transforming the Coordinate System
	Example 1-5. Transforming the coordinate system
	Figure 1-11. Stage four -- left whiskers

	1.4.6 Other Basic Shapes
	Example 1-6. Basic shapes -- polylines
	Figure 1-12. Stage five -- ears and mouth

	1.4.7 Paths
	Example 1-7. Paths
	Figure 1-13. Stage six -- nose

	1.4.8 Text
	Figure 1-14. Stage seven -- text and finished image
	Example 1-8. Text

	Chapter 2. Coordinates
	2.1 The Viewport
	2.2 Using Default User Coordinates
	
	Example 2-1. Using default coordinates
	Figure 2-1. Rectangle using default coordinates
	Example 2-2. Explicit use of units
	Example 2-3. Units on the svg element
	Figure 2-2. Rectangle using explicit units
	Figure 2-3. Viewport with units; rectangle without units

	2.3 Specifying User Coordinates for a Viewport
	
	Example 2-4. Using a viewBox
	Figure 2-4. New user coordinates

	2.4 Preserving Aspect Ratio
	2.4.1 Specifying Alignment for preserveAspectRatio
	Table?2-1. Values for alignment portion of preserveAspectRatio

	2.4.2 Using the meet Specifier
	Example 2-5. Use of meet specifier
	Figure 2-5. meet -- viewBox fits in viewport

	2.4.3 Using the slice Specifier
	Example 2-6. Use of slice specifier
	Figure 2-6. slice -- graphic fills viewport

	2.4.4 Using the none Specifier
	Example 2-7. Aspect ratio not preserved
	Figure 2-7. Aspect ratio not preserved

	2.5 Nested Systems of Coordinates
	
	Figure 2-8. Nested viewport example
	Figure 2-9. Circle in main viewport
	Figure 2-10. Circle and boundary box in main viewport

	Chapter 3. Basic Shapes
	3.1 Lines
	
	Example 3-1. Basic lines
	Figure 3-1. Basic lines

	3.2 Stroke Characteristics
	3.2.1 stroke-width
	Example 3-2. Demonstration of stroke-width
	Figure 3-2. Demonstration of stroke-width

	3.2.2 stroke Color
	Example 3-3. Demonstration of stroke color
	Figure 3-3. Demonstration of stroke color

	3.2.3 stroke-opacity
	Example 3-4. Demonstration of stroke-opacity
	Figure 3-4. Demonstration of stroke-opacity

	3.2.4 stroke-dasharray attribute
	Example 3-5. Demonstration of stroke-dasharray
	Figure 3-5. Demonstration of stroke-dasharray

	3.3 Rectangles
	
	Example 3-6. Demonstration of the rectangle element
	Figure 3-6. Demonstration of the rect element
	Figure 3-7. Closeup of transparent border

	3.3.1 Rounded Rectangles
	Example 3-7. Demonstration of rounded rectangles
	Figure 3-8. Demonstration of rounded rectangles

	3.4 Circles and Ellipses
	
	Example 3-8. Demonstration of circles and ellipses
	Figure 3-9. Demonstration of circle and ellipse elements

	3.5 The polygon Element
	
	Example 3-9. Demonstration of the polygon element
	Figure 3-10. Demonstration of the polygon element

	3.5.1 Filling Polygons That Have Intersecting Lines
	Example 3-10. Unfilled polygon with intersecting lines
	Figure 3-11. Unfilled polygon with intersecting lines
	Example 3-11. Effect of different fill-rules
	Figure 3-12. Effect of different fill-rules

	3.6 The polyline Element
	
	Example 3-12. Example of the polyline element
	Figure 3-13. Example of the polyline element
	Figure 3-14. Example of filled polyline

	3.7 Line Caps and Joins
	
	Example 3-13. Values of the stroke-linecap property
	Figure 3-15. Values of the stroke-linecap attribute
	Example 3-14. Values of the stroke-linejoin attribute
	Figure 3-16. Values of the stroke-linejoin attribute

	3.8 Basic Shapes Reference Summary
	3.8.1 Shape Elements
	Table?3-1. Table of shape elements

	3.8.2 Specifying Colors
	3.8.3 Stroke and Fill Characteristics
	Table?3-2. Stroke characteristics
	Table?3-3. Fill characteristics

	Chapter 4. Document Structure
	4.1 Structure and Presentation
	
	Figure 4-1. Structure versus presentation

	4.2 Using Styles with SVG
	4.2.1 Inline Styles
	Example 4-1. Use of inline styles

	4.2.2 Internal Stylesheets
	Example 4-2. Use of internal stylesheet
	Figure 4-2. Internal stylesheet with SVG

	4.2.3 External Stylesheets
	Example 4-3. External stylesheet
	Figure 4-3. External stylesheet with SVG
	Example 4-4. SVG file that references an external stylesheet

	4.2.4 Presentation Attributes

	4.3 Document Structure – Grouping and Referencing
	4.3.1 The g Element
	Example 4-5. Simple use of the g element
	Figure 4-4. Grouped stick figure drawing

	4.3.2 The use Element
	Figure 4-5. Re-use of grouped stick figures

	4.3.3 The defs Element
	Example 4-6. Example of the defs element
	Figure 4-6. Result of using groups within defs

	4.3.4 The symbol Element
	Example 4-7. Groups versus symbols
	Figure 4-7. Groups versus symbols

	4.3.5 The image Element
	Figure 4-8. JPEG image included in an SVG file
	Example 4-8. Use of the image element

	Chapter 5. Transforming the Coordinate System
	5.1 The translate Transformation
	
	Example 5-1. Moving a graphic with use
	Figure 5-1. Result of moving with use
	Example 5-2. Moving the coordinate system with translation
	Figure 5-2. How moving appears to work (but really doesn't)
	Figure 5-3. How moving with translate really works

	5.2 The scale Transformation
	
	Example 5-3. Uniformly scaling a graphic
	Figure 5-4. Result of using scale transformation
	Figure 5-5. How the scale transformation works
	Example 5-4. Non-uniform scaling of a graphic
	Figure 5-6. Result of using non-uniform scale transformation
	Example 5-5. Transforming a single graphic
	Figure 5-7. Result of transforming a single graphic

	5.3 Sequences of Transformations
	
	Figure 5-8. Result of translate followed by scale
	Figure 5-9. How translate followed by scale works
	Example 5-6. Sequence of transformations -- scale followed by translate
	Figure 5-10. Result of scale followed by translate
	Figure 5-11. How scale followed by translate works

	5.4 Technique: Converting from Cartesian Coordinates
	
	Figure 5-12. Trapezoid drawn with Cartesian coordinates
	Example 5-7. Direct use of Cartesian coordinates
	Figure 5-13. Result of using original Cartesian coordinates
	Example 5-8. Transformed Cartesian coordinates
	Figure 5-14. Transformed Cartesian coordinates

	5.5 The rotate Transformation
	
	Figure 5-15. Default measurement of angles
	Example 5-9. Rotation around the origin
	Figure 5-16. Result of rotation around the origin
	Figure 5-17. How rotation around the origin works
	Example 5-10. Rotation around a center point
	Figure 5-18. Result of rotation around a center point

	5.6 Technique: Scaling Around a Center Point
	
	Example 5-11. Scaling around a center point
	Figure 5-19. Result of scaling around a center point

	5.7 The skewX and skewY Transformations
	
	Example 5-12. skewX and skewY
	Figure 5-20. Result of skewX and skewY transformations

	5.8 Transformation Reference Summary
	
	Table?5-1. SVG transformations

	Chapter 6. Paths
	6.1 moveto, lineto, and closepath
	
	Example 6-1. Using moveto and lineto
	Figure 6-1. Result of using moveto and lineto
	Example 6-2. Using closepath
	Figure 6-2. Result of using closepath

	6.2 Relative moveto and lineto
	6.3 Path Shortcuts
	6.3.1 The Horizontal lineto and Vertical lineto Commands
	6.3.2 Notational Shortcuts for a Path
	Figure 6-3. Result of drawing a diamond with a path

	6.4 Elliptical Arc
	
	Figure 6-4. Variations of the elliptical arc command
	Example 6-3. Using elliptical arc
	Figure 6-5. Result of using elliptical arc

	6.5 Technique: Converting from Other Arc Formats
	6.6 Bézier Curves
	
	Figure 6-6. How graphics programs draw Bézier cu�

	6.6.1 Quadratic Bézier Curves
	Figure 6-7. Visualizing a quadratic Bézier curve
	Figure 6-8. Quadratic polybézier curve
	Figure 6-9. Smooth quadratic polybézier curve

	6.6.2 Cubic Bézier Curves
	Figure 6-10. Visualizing a cubic Bézier curve
	Figure 6-11. Result of cubic Bézier control poin�
	Figure 6-12. Cubic polybézier curve
	Figure 6-13. Smooth cubic polybézier curve

	6.7 Path Reference Summary
	
	Table?6-1. Path commands

	6.8 Paths and Filling
	
	Example 6-4. Using different fill-rule values on paths
	Figure 6-14. Result of using different fill-rule values

	6.9 The marker element
	
	Figure 6-15. Lines and arc
	Figure 6-16. Lines and arc with markers
	Example 6-5. First attempt at circular marker
	Figure 6-17. Misplaced circular marker
	Example 6-6. Correctly placed circular marker
	Figure 6-18. Correctly placed circular marker
	Example 6-7. Attempt to use three markers
	Figure 6-19. Incorrectly oriented markers
	Example 6-8. Correctly oriented markers

	6.10 Marker Miscellanea
	
	Example 6-9. Using a single marker for all vertices
	Figure 6-20. Using a single marker for all vertices

	Chapter 7. Patterns and Gradients
	7.1 Patterns
	
	Example 7-1. Path for a pattern tile
	Figure 7-1. Zoomed-in view of pattern tile

	7.1.1 patternUnits
	Example 7-2. Tiles spaced with patternUnits set to objectBoundingBox
	Figure 7-2. Tiles spaced by objectBoundingBox
	Example 7-3. Tiles spaced with patternUnits set to userSpaceOnUse
	Figure 7-3. Tiles spaced by userSpaceOnUse

	7.1.2 patternContentUnits
	Example 7-4. patternContentUnits set to objectBoundingBox
	Figure 7-4. patternContentUnits set to objectBoundingBox
	Example 7-5. Using viewBox to scale a pattern
	Figure 7-5. Pattern scaled with viewBox

	7.1.3 Nested Patterns
	Example 7-6. Nested patterns
	Figure 7-6. Patterns within patterns

	7.2 Gradients
	7.2.1 linearGradient
	Example 7-7. Simple two-color gradient
	Figure 7-7. Simple two-color gradient
	7.2.1.1 The stop element
	Example 7-8. Three-color gradient
	Figure 7-8. Three-stop gradient
	7.2.1.2 Establishing a transition line for a linear gradient
	Example 7-9. Defining vectors for a linear gradient
	Figure 7-9. Defining vectors for a linear gradient
	7.2.1.3 The spreadMethod attribute
	Example 7-10. Effects of spreadMethod values on a linear gradient
	Figure 7-10. spreadMethod values pad, repeat, and reflect for a linear gradient

	7.2.2 radialGradient
	Example 7-11. Radial gradient with three stops
	Figure 7-11. Radial gradient with three stops
	7.2.2.1 Establishing transition limits for a radial gradient
	Example 7-12. Setting limits for a radial gradient
	Figure 7-12. Setting limits for a radial gradient
	Example 7-13. Setting focal point for a radial gradient
	Figure 7-13. Setting focal point for a radial gradient
	7.2.2.2 The spreadMethod attribute for radial gradients
	Example 7-14. Effects of spreadMethod values on a radial gradient
	Figure 7-14. spreadMethod values pad, repeat, and reflect for a radial gradient

	7.2.3 Gradient Reference Summary

	7.3 Transforming Gradients and Patterns
	
	Example 7-15. Transforming patterns and gradients
	Figure 7-15. Transformation of a pattern and gradient

	Chapter 8. Text
	8.1 Text Terminology
	
	Figure 8-1. Two sets of glyphs
	Figure 8-2. Glyph measurements

	8.2 Simple Attributes and Properties of the text Element
	
	Example 8-1. Text placement and outlining
	Figure 8-3. Text placement and outlining
	Example 8-2. Text weight, style, decoration, and spacing attributes
	Figure 8-4. Text weight, style, decoration, and spacing

	8.3 Text Alignment
	
	Example 8-3. Use of text-anchor
	Figure 8-5. Result of using text-anchor

	8.4 The tspan element
	
	Example 8-4. Using tspan to change styles
	Figure 8-6. Styles changed with tspan
	Example 8-5. Using dy to change vertical positioning within text
	Figure 8-7. Vertical positioning with dy
	Example 8-6. Use of absolute positioning with tspan
	Figure 8-8. Absolutely positioned poetry
	Example 8-7. Use of multiple values for dx and dy in a text span
	Figure 8-9. Multiple horizontal and vertical offsets
	Example 8-8. Use of baseline-shift
	Figure 8-10. Subscripts and superscripts

	8.5 Setting textLength
	
	Example 8-9. Use of textLength and lengthAdjust
	Figure 8-11. Effects of varying textLength and lengthAdjust

	8.6 Vertical Text
	
	Example 8-10. Producing vertical text
	Figure 8-12. Vertical text

	8.7 Internationalization and Text
	8.7.1 Unicode and Bidirectionality
	Example 8-11. International text using Unicode
	Figure 8-13. Multilingual text

	8.7.2 The switch Element
	Example 8-12. Use of the switch element
	Figure 8-14. Combined screenshots as seen with different language preferences

	8.7.3 Using a Custom Font
	Figure 8-15. Korean syllables from an external font
	Example 8-13. Use of an external font

	8.8 Text on a Path
	
	Example 8-14. Examples of textPath
	Figure 8-16. Text along a path (with paths shown)
	Figure 8-17. Text along a path (paths not shown)
	Example 8-15. Text Length and startOffset
	Figure 8-18. Effects of long text and startOffset

	8.9 Whitespace and Text
	8.10 Case Study -- Adding Text to a Graphic
	
	Example 8-16. Text case study
	Figure 8-19. Text along path added to graphic

	Chapter 9. Clipping and Masking
	9.1 Clipping to a Path
	
	Example 9-1. Clipping to a rectangular path
	Figure 9-1. Simple rectangular clipping
	Example 9-2. Complex clip paths
	Example 9-3. clipPathUnits using objectBoundingBox
	Figure 9-2. Complex path clipping
	Figure 9-3. Use of a circular/oval clipping path

	9.2 Masking
	
	Figure 9-4. Effect of color values on transparency
	Example 9-4. Masking with opaque colors
	Figure 9-5. Alpha value equal to opacity
	Example 9-5. Mask alpha using opacity only

	9.3 Case Study -- Masking a Graphic
	
	Example 9-6. Unmasked image
	Figure 9-6. Unmasked image
	Figure 9-7. Masked image

	Chapter 10. Filters
	
	
	Figure 10-1. Flower composed of plain vectors

	10.1 How Filters Work
	10.2 Creating a Drop Shadow
	10.2.1 Establishing the Filter's Bounds
	10.2.2 Using feGaussianBlur for a Drop Shadow
	Example 10-1. First attempt to produce a drop shadow
	Figure 10-2. Result of first attempt at a drop shadow

	10.2.3 Storing, Chaining, and Merging Filter Results
	Example 10-2. Improved drop shadow filter
	Figure 10-3. Result of improved drop shadow

	10.3 Creating a Glowing Shadow
	
	Figure 10-4. Drop shadow applied to text

	10.3.1 The feColorMatrix Element
	Example 10-3. Glow filter
	Figure 10-5. Drop shadow and glowing text

	10.3.2 More About the feColorMatrix Element
	Figure 10-6. Result of hueRotate on fully saturated colors
	Figure 10-7. Result of saturate on primary colors
	Figure 10-8. Result of luminanceToAlpha

	10.4 The feImage Filter
	
	Example 10-4. Using the feImage element
	Figure 10-9. Result of feImage

	10.5 The feComponentTransfer Filter
	
	Example 10-5. Changing brightness with feComponentTransfer
	Figure 10-10. Result of linear component transfer
	Figure 10-11. Gamma curve functions
	Example 10-6. Gamma adjustment with feComponentTransfer
	Figure 10-12. Result of using gamma correction
	Figure 10-13. Result of using table and discrete transfers
	Figure 10-14. Comparsion of linearRGB and sRGB

	10.6 The feComposite Filter
	
	Figure 10-15. Result of using feComposite operators
	Example 10-7. Use of feComposite in and out
	Figure 10-16. Result of feComposite in and out

	10.7 The feBlend Filter
	
	Figure 10-17. Result of feBlend in and out

	10.8 The feFlood and feTile Filters
	
	Example 10-8. Example of feFlood and feTile
	Figure 10-18. Result of feFlood and feTile elements

	10.9 Lighting Effects
	
	Figure 10-19. Relationship of x-, y,- and z-axes

	10.9.1 Diffuse Lighting
	Example 10-9. Diffuse lighting with a point light source
	Figure 10-20. Result of applying diffuse lighting filter

	10.9.2 Specular Lighting
	Example 10-10. Specular lighting with a distant light
	Figure 10-21. Result of applying specular lighting filter

	10.10 Accessing the Background
	
	Example 10-11. Accessing the background
	Figure 10-22. Result of accessing background alpha

	10.11 The feMorphology Element
	
	Example 10-12. Thickening and thinning with feMorphology
	Figure 10-23. Result of using feMorphology

	10.12 The feConvolveMatrix Element
	
	Example 10-13. Embossing with feConvolveMatrix
	Figure 10-24. Result of using feConvolveMatrix

	10.13 The feDisplacementMap Element
	
	Example 10-14. Using a gradient as a displacement map
	Figure 10-25. Result of using feDisplacementMap
	Example 10-15. Using a Graphic as Its Own Displacement Map
	Figure 10-26. Same graphic used as both inputs to feDisplacementMap

	10.14 The feTurbulence Element
	
	Figure 10-27. Various values of feTurbulence attributes

	10.15 Filter Reference Summary
	
	Table?10-1. Filter reference summary

	Chapter 11. Animating and Scripting SVG
	11.1 Animation Basics
	
	Example 11-1. The incredible shrinking rectangle
	Figure 11-1. Beginning of animation
	Figure 11-2. Ending of animation
	Example 11-2. Multiple animations on a single object
	Example 11-3. Simple animation of multiple objects
	Figure 11-3. Stages of multi-object animation

	11.2 How Time Is Measured
	
	Example 11-4. Synchronization of animations
	Figure 11-4. Stages of synchronized animations
	Example 11-5. Synchronization of animations with offsets

	11.3 Repeated Action
	
	Example 11-6. Example of repeated animation
	Example 11-7. Synchronizing an animation with a repetition

	11.4 The set Element
	
	Example 11-8. Example of set element

	11.5 The animateColor Element
	
	Example 11-9. Example of animateColor
	Example 11-10. Use of the prev keyword in animation

	11.6 The animateTransform Element
	
	Example 11-11. Example of animateTransform
	Figure 11-5. animateTransform -- before and after
	Example 11-12. Example of multiple animateTransform elements
	Figure 11-6. Multiple animateTransforms -- before and after

	11.7 The animateMotion Element
	
	Example 11-13. Animation along a linear path
	Example 11-14. Animation along a complex path
	Figure 11-7. animateMotion along a complex path
	Example 11-15. Animation along a complex path with auto-rotation
	Figure 11-8. animateMotion along a complex path with auto-rotation
	Example 11-16. Motion along a complex path using mpath

	11.8 Using Links in SVG
	
	Example 11-17. Links in SVG

	11.9 Scripting SVG
	11.9.1 Changing Attributes of a Single Object
	Example 11-18. Basic scripting -- changing a single object

	11.9.2 Changing Attributes of Multiple Objects
	Figure 11-9. Screenshots of different selections
	Example 11-19. Changing multiple objects in a script

	11.9.3 Dragging Objects
	Figure 11-10. Screenshot of color sliders

	11.9.4 Modifying Text
	Figure 11-11. Screenshot of labeled color sliders

	11.9.5 Interacting with an HTML Page
	Figure 11-12. Screenshot of HTML and SVG interaction

	11.9.6 Scripting and Animation Together
	Figure 11-13. Screenshot of two stages of scripting with animation
	Example 11-20. Scripting and Animation Together

	11.9.7 Animation via Scripting
	Example 11-21. Animating a path with scripting
	Figure 11-14. Beginning and ending of scripted path change

	Chapter 12. Generating SVG
	12.1 Using Perl to Convert Custom Data to SVG
	
	Figure 12-1. Conversion from ARC/INFO ungenerate to SVG

	12.2 Using Java to Convert XML to SVG
	
	Figure 12-2. Sample converted from MathML to SVG

	12.3 Using XSLT to Convert XML Data to SVG
	12.3.1 Defining the Task
	Figure 12-3. Graphic weather template

	12.3.2 How XSLT Works
	12.3.3 Developing an XSL Stylesheet
	Figure 12-4. XSL-generated SVG file showing thermometer
	Figure 12-5. XSLT-generated SVG file without time data

	12.3.4 Extending XSLT in Java
	Figure 12-6. XSLT-generated SVG file showing complete data

	Chapter 13. Serving SVG Files
	13.1 Serving Web Files -- The Task at Hand
	
	Figure 13-1. Screenshot of web page
	Figure 13-2. Screenshot of resulting graphic

	13.2 Partitioning the Task
	13.2.1 The Request Web Page
	Example 13-1. HTML form for requesting OMF information

	13.2.2 The Weather Servlet
	Example 13-2. Weather.java, a servlet for creating a web page

	13.2.3 The Transform Servlet
	Figure 13-3. Information flow of Transform servlet
	Figure 13-4. Screenshot of error image

	13.2.4 The XSLT File

	13.3 Setting up the Server

	Appendix A. The XML You Need for SVG
	A.1 What Is XML?
	A.2 Anatomy of an XML Document
	A.2.1 Elements and Attributes
	A.2.2 Name Syntax
	A.2.3 Well-Formed
	Table?A-1. Examples of poorly formed XML documents

	A.2.4 Comments
	A.2.5 Entity References
	Table?A-2. Predefined entity references in XML 1.0

	A.2.6 Character References
	Table?A-3. Example character references in UTF-8

	A.3 Character Encodings
	A.3.1 Unicode Encoding Schemes
	A.3.2 Other Character Encodings

	A.4 Validity
	A.4.1 Document Type Definitions (DTDs)
	A.4.2 Putting It Together

	A.5 XML Namespaces
	A.6 Tools for Processing XML
	A.6.1 Selecting a Parser
	A.6.2 XSLT Processors

	Appendix B. Introduction to Stylesheets
	B.1 Anatomy of a Style
	B.2 Style Selectors
	B.3 Internal Stylesheets
	B.4 Style Selector Classes
	
	Table?B-1. CSS property table for SVG

	Appendix C. Programming Concepts
	C.1 Constants
	C.2 Variables
	
	Figure C-1. Two empty variables

	C.3 Assignment and Operators
	
	Figure C-2. Two assigned variables

	C.4 Arrays
	
	Figure C-3. Depiction of an array

	C.5 Comments
	C.6 Conditional Statements
	C.7 Repeated Actions
	C.8 Functions
	C.9 Objects, Properties, and Methods
	
	Figure C-4. The object diagram for a toaster

	C.10 What, Not How

	Appendix D. Matrix Algebra
	D.1 Matrix Terminology
	
	Figure D-1. 2 by 7 matrix of daily temperatures
	Figure D-2. Coordinates expressed as a matrix

	D.2 Matrix Addition
	
	Figure D-3. Addition of two 3 by 2 matrices
	Figure D-4. Simple method to translate coordinates

	D.3 Matrix Multiplication
	
	Figure D-5. Two matrices to be multiplied
	Figure D-6. First entry in multiplied matrices
	Figure D-7. Second entry in multiplied matrices
	Figure D-8. Completed multiplication of matrices
	Figure D-9. Simple scaling by multiplying matrices
	Figure D-10. Multiplying a scalar by a matrix

	D.4 How SVG Uses Matrix Algebra for Transformations
	
	Figure D-11. SVG representation of a coordinate
	Figure D-12. SVG representation of translation
	Figure D-13. SVG representation of scaling
	Figure D-14. Translation followed by scaling
	Figure D-15. Result of multiplying translation and scaling matrices
	Figure D-16. Result of premultiplying translation and scaling matrices
	Figure D-17. Rotate, skew x, and skew y transformation matrices
	Figure D-18. Color transformation matrix

	Appendix E. Creating Fonts
	E.1 The ttf2svg Utility

	Appendix F. Using SVG with Other XML Applications
	F.1 Referring to an SVG Document in HTML
	F.2 Referring to an SVG Document in XHTML
	F.3 Placing SVG Directly Within XHTML Documents
	
	Example F-1. XHTML and SVG in one document

	F.4 Embedding SVG in XSL Formatting Objects
	
	Figure F-1. PDF output
	Example F-2. Combined XSL-FO and SVG markup

	Colophon
	Index

